Skip to main content
Log in

All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter

  • Fiber Optics
  • Published:
Laser Physics

Abstract

We report dissipative solitons generation in the figure-8 all-normal dispersion fiber ring laser. The steep edge of the output optical spectrum results from the filtering effect of NOLM together with polarization controllers (PCs). No any physical bandpass filters are used in the cavity. Moreover, the output wavelength can be tuned in a wide range of about 20 nm. In the long-wavelength region, the spectral filtering effect of NOLM becomes weaker and output spectrum shows only one steep side. Filtering effect can perform periodically with increasing the pump power. The highly chirped pulse has good potential for application to the chirped pulse amplification (CPA) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Zhao, S.-S. Min, H.-C. Wang, and S. Fleming, Opt. Express 14, 10475 (2006).

    Article  ADS  Google Scholar 

  2. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, Opt. Express 15, 6623 (2007).

    Article  ADS  Google Scholar 

  3. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).

    Article  ADS  Google Scholar 

  4. Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, Laser Phys. Lett. 5, 364 (2008).

    Article  ADS  Google Scholar 

  5. Y. H. Zhong, Z. X. Zhang, and X. Y. Tao, Laser Phys. 20, 1756 (2010).

    Article  ADS  Google Scholar 

  6. X. Wu, D. Y. Tang, L. M. Zhao, and H. Zhang, Laser Phys. 20, 1913 (2010).

    Article  ADS  Google Scholar 

  7. O. Pottiez, B. Ibarra-Escamilla, E. A. Kuzin, R. Grajales-Coutiño, and C.-M. Carrillo-Delgado, Laser Phys. 20, 709 (2010).

    Article  ADS  Google Scholar 

  8. O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin, Laser Phys. 19, 371 (2009).

    Article  ADS  Google Scholar 

  9. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, Appl. Phys. Lett. 96, 111112 (2010).

    Article  ADS  Google Scholar 

  10. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, ACS Nano 4, 803 (2010).

    Article  Google Scholar 

  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, and S. C. Tjin, Laser Phys. Lett. 7, 591 (2010).

    Article  ADS  Google Scholar 

  12. Z. P. Sun. A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrar, Appl. Phys. Lett. 95, 253102 (2009).

    Article  ADS  Google Scholar 

  13. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, Opt. Lett. 35, 3249 (2010).

    Article  Google Scholar 

  14. J. Fekete, A. Cserteg, and R. Szipöcs, Laser Phys. Lett. 6, 49 (2009).

    Article  ADS  Google Scholar 

  15. L. J. Kong, X. S. Xiao, and C. X. Yang, Laser Phys. Lett. 7, 359 (2010).

    Article  ADS  Google Scholar 

  16. Y.-J. Song, M.-L. Hu, C.-L. Gu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 7, 230 (2010).

    Article  ADS  Google Scholar 

  17. B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, Laser Phys. Lett. 7, 661 (2010).

    Article  ADS  Google Scholar 

  18. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, Opt. Express 17, 20707 (2009).

    Article  ADS  Google Scholar 

  19. K.-H. Lin, J.-H. Lin, and C.-C. Chen, Laser Phys. 20, 1984 (2010).

    Article  ADS  Google Scholar 

  20. D. Mao, X. M. Liu, L. R. Wang, X. H. Li, H. Lu, H. B. Sun, and Y. K. Gong, Laser Phys. 20, 847 (2010).

    Article  ADS  Google Scholar 

  21. F. Ö. Iday, J. R. Buckley, W. G. Clark, and F. W. Wise Phys. Rev. Lett. 92, 213902 (2004).

    Article  ADS  Google Scholar 

  22. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).

    Article  ADS  Google Scholar 

  23. F. W. Wise, A. Chong, and W. Renninger, Laser Photon. Rev. 2, 58 (2008).

    Article  Google Scholar 

  24. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Nature Photon. 4, 307 (2010).

    Article  Google Scholar 

  25. L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).

    Article  ADS  Google Scholar 

  26. K. Özgören and F. Ö. Ilday, Ilday, Opt. Lett. 35, 1296 (2010).

    Article  ADS  Google Scholar 

  27. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, Opt. Lett. 35, 2756 (2010).

    Article  ADS  Google Scholar 

  28. J. Zhou, P. Yan, D. Wang, and M. Gong, Laser Phys. 20, 1981 (2010).

    Article  ADS  Google Scholar 

  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, New York, 2007).

    Google Scholar 

  30. X. H. Li, X. M. Liu, Y. K. Gong, H. B. Sun, L. R. Wang, and K. Q. Lu, Laser Phys. Lett. 7, 55 (2010).

    Article  ADS  Google Scholar 

  31. C.-H. Yeh, C.-W. Chow, and Y.-C. Chang, Laser Phys. 20, 830 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Wang.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.H., Wang, Y.S., Zhao, W. et al. All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter. Laser Phys. 21, 940–944 (2011). https://doi.org/10.1134/S1054660X11090143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11090143

Keywords

Navigation