Skip to main content
Log in

Femtosecond laser ablation on dental hard tissues—Analysis of ablated profile near an interface using local effective intensity

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Rabelo, P. A. Ana, C. Benetti, M. E. G. Valerio, and D. M. Zezell, Laser Phys. 20, 871 (2010).

    Article  ADS  Google Scholar 

  2. H. G. D. Boari, P. A. Ana, C. P. Eduardo, G. L. Powell, and D. M. Zezell, Laser Phys. 19, 1463 (2009).

    Article  ADS  Google Scholar 

  3. I. T. Kato, D. M. Zezell, F. M. Mendes, and N. U. Wetter, Laser Phys. 20, 1469 (2010).

    Article  ADS  Google Scholar 

  4. A. Z. Freitas, D. M. Zezell, M. P. A. Mayer, A. C. Ribeiro, A. S. L. Gomes, and N. D. Vieira, Jr., Laser Phys. Lett. 6, 896 (2009).

    Article  Google Scholar 

  5. A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira, Jr., Laser Phys. Lett. 7, 236 (2010).

    Article  ADS  Google Scholar 

  6. M. L. Siniaeva, M. N. Siniavsky, V. P. Pashinin, Ad. A. Mamedov, V. I. Konov, and V. V. Kononenko, Laser Phys. 19, 1056 (2009).

    Article  ADS  Google Scholar 

  7. V. I. Mazhukin, A. V. Mazhukin, and M. G. Lobok, Laser Phys. 19, 1169 (2009).

    Article  ADS  Google Scholar 

  8. R. S. Queiroz, M. C. Bandeca, L. R. Calixto, U. Gaiao, A. Cuin, and S. T. Porto-Neto, Laser Phys. 20, 1647 (2010).

    Article  ADS  Google Scholar 

  9. D. P. Jacomassi, E. C. Lins, A. N. S. Rastelli, C. Kurachi, and V. S. Bagnato, Laser Phys. 19, 2230 (2009).

    Article  ADS  Google Scholar 

  10. V. R. G. Ciavijo, M. C. Bandeca, L. R. Calixto, M. R. Nadalin, E. G. Saade, O. B. Oliveira, Jr., and M. F. Andrade, Laser Phys. 19, 1920 (2009).

    Article  ADS  Google Scholar 

  11. E. G. Saade, M. C. Bandeca, A. N. S. Rastelli, V. S. Bagnato, and S. T. Porto-Neto, Laser Phys. 19, 1276 (2009).

    Article  ADS  Google Scholar 

  12. M. C. Bandeca, O. El-Mowafy, E. G. Saade, A. N. S. Rastelli, V. S. Bagnato, and S. T. Porto-Neto, Laser Phys. 19, 1050 (2009).

    Article  ADS  Google Scholar 

  13. A. D. Cruz, S. M. Almeida, A. N. S. Rastelli, V. S. Bagnato, and F. N. Byscolo, Laser Phys. 19, 461 (2009).

    Article  ADS  Google Scholar 

  14. A. Haruyama, J. Kato, A. Kameyama, Y. Hirai, and Y. Oda, Laser Phys. 20, 881 (2010).

    Article  ADS  Google Scholar 

  15. M. Dutra-Correa, PhD Thesis in Dentistry (School of Dentistry of São José dos Campos— UNESP, Phys. Inst. of São Carlos—USP, 2008).

  16. J. Neev, K. Pham, J. P. Lee, and J. M. White, Lasers Surg. Med. 18, 121 (1996).

    Article  Google Scholar 

  17. J. Neev, L. B. Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, IEEE J. Sel. Top. Quantum Electron. 2, 790 (1996).

    Article  Google Scholar 

  18. M. Dutra-Correa, J. R. Rodrigues, G. Nicolodelli, C. Kurachi, and V. S. Bagnato, J. Bras. Laser. 2, 25 (2010).

    Google Scholar 

  19. M. Dutra-Correa, J. R. Rodrigues, G. Nicolodelli, D. P. Jacomassi, C. Kurachi, and V. S. Bagnato, Braz. Oral Res. 22, 199 (2008).

    Google Scholar 

  20. J. Kruger, W. Kautek, and H. Newesely, Appl. Phys. Mat. Sci. Process 69, 403 (1999).

    Article  ADS  Google Scholar 

  21. J. E. Marion, B. M. Kim, M. K. Reev, and J. Neev, in Proceedings of the SPIE Annual Meeting, Denver, Colorado, USA, 1999, pp. 42–50.

  22. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, Appl. Surf. Sci. 197–198, 737 (2002).

    Article  Google Scholar 

  23. D. Fried, in Proceedings of the SPIE Annual Meeting, Monterey, California, USA, 2000, pp. 136–148.

  24. B. M. Kim, M. D. Feit, A. M. Rubenchik, E. J. Joslin, J. Eichler, P. C. Stoller, and L. B. Silva, Appl. Phys. Lett. 76, 4001 (2000).

    Article  ADS  Google Scholar 

  25. A. V. Rode, E. G. Gamaly, B. Luther-Davis, B. T. Taylor, M. Glaessel, J. M. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, J. Appl. Phys. 92, 2153 (2002).

    Article  ADS  Google Scholar 

  26. A. V. Rode, E. G. Gamaly, B. Luther-Davis, B. T. Taylor, M. Glaessel, J. M. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, Austr. Dent. J. 48, 233 (2003).

    Article  Google Scholar 

  27. P. Weigl, A. Kasenbacher, and K. Werelius, in Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004).

    Google Scholar 

  28. M. H. Niemz, Laser-Tissue Interactions-Fundamentals and Applications (Springer, Berlin, 2003).

    Google Scholar 

  29. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, Appl. Phys. B 79, 269 (2004).

    Article  Google Scholar 

  30. S. R. Franklin, P. Chauhan, A. Mitra, and R. K. Thareja, J. Appl. Phys. 97, 094919 (2005).

    Article  ADS  Google Scholar 

  31. S. Parker, Brit. Dent. J. 202, 445 (2007).

    Article  Google Scholar 

  32. R. F. Z. Lizarelli, M. M. Costa, E. Carvalho-Filho, F. D. Nunes, and V. S. Bagnato, Laser Phys. Lett 5, 63 (2008).

    Article  ADS  Google Scholar 

  33. J. F. Kraft, K. Vestentoft, B. H. Christensen, H. Lovschall, and P. Balling, Appl. Surf. Sci. 254, 1895 (2008).

    Article  ADS  Google Scholar 

  34. B. Girard, D. Tu, M. R. Armstrong, B. C. Wilson, C. M. L. Clokie, and R. J. Dwayne Miller, Lasers Surg. Med. 39, 273 (2007).

    Article  Google Scholar 

  35. Y. Liu and M. Niemz, Lasers Med. Sci. 22, 171 (2007).

    Article  Google Scholar 

  36. Y. Suzaki and A. Tachibana, Appl. Opt. 14, 2809 (1975).

    ADS  Google Scholar 

  37. W. Seka, D. Fried, J. D. B. Featherstone, and S. F. Borzillary, J. Dent. Res. 74, 1086 (1995).

    Article  Google Scholar 

  38. E. Katchburian and V. E. Arana-Chavez, Histologia e Embriologia Oral (Médica Panamericana, São Paulo, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dutra-Correa.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutra-Correa, M., Nicolodelli, G., Rodrigues, J.R. et al. Femtosecond laser ablation on dental hard tissues—Analysis of ablated profile near an interface using local effective intensity. Laser Phys. 21, 965–971 (2011). https://doi.org/10.1134/S1054660X11090064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11090064

Keywords

Navigation