Skip to main content

Zinc oxide nanostructured layers for gas sensing applications


Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.

This is a preview of subscription content, access via your institution.


  1. 1.

    Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).

    Article  Google Scholar 

  2. 2.

    Y. Huang, X. Duan, and C. M. Lieber, Small 1, 142 (2005).

    Article  Google Scholar 

  3. 3.

    S. H. Park, Nanotechnology 18, 55608 (2007).

    Article  ADS  Google Scholar 

  4. 4.

    J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, Nano Lett. 6, 1719 (2006).

    Article  ADS  Google Scholar 

  5. 5.

    H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  6. 6.

    P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, and E. G. Wang, Chem. Phys. Lett. 416, 75 (2005).

    Article  ADS  Google Scholar 

  7. 7.

    M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).

    Article  ADS  Google Scholar 

  8. 8.

    J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, Nanotechnology 17, S304 (2006).

    Article  ADS  Google Scholar 

  9. 9.

    A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).

    Article  Google Scholar 

  10. 10.

    S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, Appl. Phys. Lett. 67, 3918 (1995).

    Article  ADS  Google Scholar 

  11. 11.

    Z. L. Wang, Appl. Phys. A 88, 7 (2007).

    Article  ADS  Google Scholar 

  12. 12.

    J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, Nanotechnology 17, 4995 (2006).

    Article  ADS  Google Scholar 

  13. 13.

    S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su, and M. H. Hon, Sensors 6, 1420 (2006).

    Article  Google Scholar 

  14. 14.

    A. Setaro, A. Bismuto, S. Lettieri, P. Maddalena, E. Comini, S. Bianchi, C. Baratto, and G. Sberveglieri, Sens. Actuat. B 130, 391 (2008).

    Article  Google Scholar 

  15. 15.

    C. de Julián Fernández, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, Sens. Actuat. B 130, 531 (2008).

    Article  Google Scholar 

  16. 16.

    J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, Appl. Phys. Lett. 88, 233106 (2006).

    Article  ADS  Google Scholar 

  17. 17.

    N. Kumar, A. Dorfman, and J. Hahm, Nanotechnology 17, 2875 (2006).

    Article  ADS  Google Scholar 

  18. 18.

    T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, Sens. Actuat. B 138, 344 (2009).

    Article  Google Scholar 

  19. 19.

    Z. L. Wang, Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  20. 20.

    C. Liu, H. Li, W. Jie, X. Zhang, and D. Yu, Mater. Lett. 60, 1394 (2006).

    Article  Google Scholar 

  21. 21.

    M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).

    Article  Google Scholar 

  22. 22.

    H.-M. Cheng, H.-C. Hsu, S. Yang, C.-Y. Wu, Y.HC. Lee, L.-J. Lin, and W.-F. Hsieh, Nanotechnology 16, 2882 (2005).

    Article  ADS  Google Scholar 

  23. 23.

    J.-J. Wu and S.-C. Liu, Adv. Mater. 14, 215 (2002).

    Article  Google Scholar 

  24. 24.

    W. I. Park, G.-C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002).

    Article  Google Scholar 

  25. 25.

    J. Dai, H. Liu, W. Fang, L. Wang, Y. Pu, Y. Chen, and F. Jiang, J. Cryst. Growth 283, 93 (2005).

    Article  ADS  Google Scholar 

  26. 26.

    X. Liu, W. H. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).

    Article  ADS  Google Scholar 

  27. 27.

    Y. W. Heo, V. Varadanarajan, M. Kaufman, K. Kim, and D. P. Norton, Appl. Phys. Lett. 81, 3046 (2002).

    Article  ADS  Google Scholar 

  28. 28.

    D. Kim, S. Wakaiki, S. Komura, and M. Nakayama, Appl. Phys. Lett. 90, 101918 (2007).

    Article  ADS  Google Scholar 

  29. 29.

    T. N. Hansen, J. Schou, and J. G. Lunney, Appl. Phys. Lett. 72, 1829 (1998).

    Article  ADS  Google Scholar 

  30. 30.

    J. Gonzalo, C. N. Afonso, and I. Madariaga, J. Appl. Phys. 81, 951 (1997).

    Article  ADS  Google Scholar 

  31. 31.

    S. Acquaviva, M. Fernandez, G. Leggieri, A. Luches, M. Martino, and A. Perrone, Appl. Phys. A 69, S471 (1999).

    Article  ADS  Google Scholar 

  32. 32.

    R. O’Haire, A. Meaney, E. McGlynn, M. O. Henry, J.HR. Duclère, and J.-P. Mosnier, Superlatt. Microstruct. 139, 153 (2006).

    Article  Google Scholar 

  33. 33.

    T. Premkumar, P. Manoravi, B. K. Panigrahi, and K. Baskar, Appl. Surf. Sci. 255, 6819 (2009).

    Article  ADS  Google Scholar 

  34. 34.

    T. Okada, K. Kawashima, Y. Nakata, and Xu Ning, Jpn. J. Appl. Phys. 44, 688 (2005).

    Article  ADS  Google Scholar 

  35. 35.

    Y. Sun, R. P. Doherty, J. L. Warren, and M. N. R. Ashfold, Chem. Phys. Lett. 447, 257 (2007).

    Article  ADS  Google Scholar 

  36. 36.

    B. Yang, A. Kumar, H. Zhang, P. Feng, R. S. Katiyar, and Z. Wang, J. Phys. D 42, 045415 (2009).

    Article  ADS  Google Scholar 

  37. 37.

    L. S. Gorbatenko, O. A. Novodvorsky, V. Ya. Panchenko, O. D. Khramova, Ye. A. Cherebilo, A. A. Lotin, C. Wenzel, N. Trumpaicka, and J. W. Bartha, Laser Phys. 19, 1152 (2009).

    Article  ADS  Google Scholar 

  38. 38.

    A. V. Kabashin, Laser Phys. 19, 1136 (2009).

    Article  ADS  Google Scholar 

  39. 39.

    D. Valerini, A. P. Caricato, M. Lomascolo, F. Romano, A. Taurino, T. Tunno, and M. Martino, Appl. Phys. A 93, 729 (2008).

    Article  ADS  Google Scholar 

  40. 40.

    F. Claeyssens, A. Cheesman, S. J. Henley, and M. N. R. Ashfold, J. Appl. Phys. 92, 6886 (2002).

    Article  ADS  Google Scholar 

  41. 41.

    A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Luches.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caricato, A.P., Cretí, A., Luches, A. et al. Zinc oxide nanostructured layers for gas sensing applications. Laser Phys. 21, 588–597 (2011).

Download citation


  • Substrate Temperature
  • Zinc Oxide
  • Laser Physics
  • Pulse Laser Deposition Technique
  • Hexagonal Pyramid