Skip to main content
Log in

Fiber-optic sensors based on fiber-optic lasers and microoptomechanical resonance structures

  • Fiber Optics
  • Published:
Laser Physics

Abstract

Fiber-optic sensors based on fiber lasers and the light-excited microoptomechanical resonance structures are proposed and experimentally studied. The variants of multichannel measuring systems with frequency division multiplexing are considered. The number of the measurement channels and the needed power of the fiber laser are estimated. It is demonstrated that the frequency deviation of the microcavity can be measured in the limits \( \left| {\frac{{\Delta f}} {f}} \right| \) ≤ 0.1 with a relative error of ±2 × 10−6, which allows the creation of fiber-optic sensors with a measurement dynamic range of up to 2 × 104.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tahib-Azar, Microactuators (Kluwer Acad., Boston 1998).

    Google Scholar 

  2. B. Culshaw, Sensors Actuat. A 46–47, 463 (1995).

    Article  Google Scholar 

  3. P. Nieva, Sensors Transdusers J., Special Iss., 10 (2007).

  4. V. Varadan, K. Vinoy, and K. Jose, RF MEMS and Their Applications (Wiley, Pennsylvania State Univ., USA, 2003).

    Google Scholar 

  5. S. Lu, S. Ahir, V. Velasco, B. King, P. Xu, E. Terentjev, and B. Panchapakesan, J. Micro-Nano Mech. 5, 29 (2009).

    Article  Google Scholar 

  6. F. Egorov, S. Nikitov, and V. Potapov, J. Commun. Technol. Electron. 50, 673 (2005)

    Google Scholar 

  7. Z. Fu, Y. Wang, D. Yang, and Y. Shen, Laser Phys. Lett. 6, 594 (2009).

    Article  ADS  Google Scholar 

  8. C. Yeh and C. Chow, Laser Phys. 20, 512 (2010).

    Article  ADS  Google Scholar 

  9. J. Chang, Q. Wang, X. Zhang, L. Ma, T. Lin, Q. Wang, Z. Liu, S. Zhang, and S. Ding, Laser Phys. 18, 452 (2008).

    Article  ADS  Google Scholar 

  10. G. Cranch, S. Foster, and C. K. Kirkendall, Proc. SPIE 7503, 750352–1 (2009).

    Article  Google Scholar 

  11. V. Burkov, F. Egorov, and V. Potapov, Tech. Phys. 50, 69(2005).

    Article  Google Scholar 

  12. F. Egorov and V. Potapov, Tech. Phys. Lett. 35, 834 (2009).

    Article  ADS  Google Scholar 

  13. G. Gurchonok, I. Djodjua, S. Amirova, and T. Tulaikova, Sensors Actuat. A 93, 197 (2001).

    Article  Google Scholar 

  14. A. Holst and D. Vassiliev, Appl. Anal. 74, 479 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. Q. Wang and Q. Yu, Laser Phys. Lett. 6, 607 (2009).

    Article  ADS  Google Scholar 

  16. W. Chen, S. Lou, S. Feng, L. Wang, H. Li, T. Guo, and S. Jian, Laser Phys. 19, 2115 (2009).

    Article  ADS  Google Scholar 

  17. X. Li, X. Liu, Y. Gong, H. Sun, L. Wang, and K. Lu, Laser Phys. Lett. 7, 55 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Egorov.

Additional information

Original Text © Astro, Ltd., 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, F., Potapov, V. Fiber-optic sensors based on fiber-optic lasers and microoptomechanical resonance structures. Laser Phys. 21, 299–303 (2011). https://doi.org/10.1134/S1054660X11040037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11040037

Keywords

Navigation