Skip to main content
Log in

Nonlinear change in refractive index and transmission coefficient of silicon at long-pulse, mJ-range, 1.54-μm excitation

  • Interaction of Laser Radiation with Matter
  • Published:
Laser Physics

Abstract

An experimental study and theoretical modeling of the nonlinear changes in transmission coefficient and refractive index of mono-crystalline Silicon (Si) at long-pulse, mJ-range, single-beam Z-scan probing at 1.54 μm wavelength are reported. It is shown experimentally that at increasing pulse energy density the photo-induced darkening permanently increases in Si while its photo refraction properties demonstrate a more complicate character, being a product of various type nonlinearities. A theoretical analysis based on simple assumptions of a square-shape pulse in the time domain and Gaussian spatial distribution of the probe beam allows fitting of a whole of the experimentally measured open- and closed-aperture Z-scans through an account of the main contributions in the light-induced absorption and refractive index nonlinearities. These are revealed to originate from non-direct two-photon absorption and Kerr effect, induced absorption and dispersion of light-generated free carriers, and light-induced thermal lensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002).

    Article  ADS  Google Scholar 

  2. M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).

    Article  ADS  Google Scholar 

  3. G. W. Rieger, K. S. Virk, and J. F. Young, Appl. Phys. Lett. 84, 900 (2004).

    Article  ADS  Google Scholar 

  4. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).

    Article  ADS  Google Scholar 

  5. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).

    Article  ADS  Google Scholar 

  6. K. S. Bindra, Opt. Commun. 246, 421 (2004).

    Article  ADS  Google Scholar 

  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, Opt. Lett. 29, 2867 (2004).

    Article  ADS  Google Scholar 

  8. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).

    Article  ADS  Google Scholar 

  9. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, Opt. Express 14, 12380 (2006).

    Article  ADS  Google Scholar 

  10. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, Opt. Express 14, 8336 (2006).

    Article  ADS  Google Scholar 

  11. Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006).

    Article  ADS  Google Scholar 

  12. E. Dulkeith, Yu. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., Opt. Express 12, 5524 (2006).

    Article  ADS  Google Scholar 

  13. A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).

    Article  ADS  Google Scholar 

  14. L. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).

    Article  ADS  Google Scholar 

  15. S. S. Yang, T.-H. Wei, T. H. Huang, and Y.-C. Chang, Opt. Express 15, 1718 (2007).

    Article  ADS  Google Scholar 

  16. Q. Lin, J. Zhan, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).

    Article  ADS  Google Scholar 

  17. J. Zhang, Q. Lin, G. Pirreda, and R. W. Boyd, Appl. Phys. Lett. 91, 021113 (2007).

    Article  Google Scholar 

  18. A. Hache and M. Bourgeois, Appl. Phys. Lett. 77, 4089 (2000).

    Article  ADS  Google Scholar 

  19. W. Park, Laser Phys. Lett. 7, 93 (2010).

    Google Scholar 

  20. V. Ya. Gayvoronsky, M. A. Kopylovsky, Yu. V. Gromov, S. V. Zabotnov, N. A. Piskunov, L. A. Golovan, V. Yu. Timoshenko, P. K. Kashkarov, G. Y. Fang, and C. F. Li, Laser Phys. Lett. 5, 894 (2008).

    Article  ADS  Google Scholar 

  21. Y. Choi, J.-H. Park, M. R. Kim, and W. Jhe, Appl. Phys. Lett. 78, 856 (2001).

    Article  ADS  Google Scholar 

  22. R. A. Soref and J. P. Lorenzo, IEEE J. Quantum Electron. 22, 873 (1986).

    Article  ADS  Google Scholar 

  23. W. B. Gauster and J. C. Bushnell, J. Appl. Phys. 41, 3850 (1970).

    Article  ADS  Google Scholar 

  24. J. F. Reintjes and J. C. McGroddy, Phys. Rev. Lett. 30, 901 (1973).

    Article  ADS  Google Scholar 

  25. M. G. Grimaldi, P. Baeri, and E. Rimini, Appl. Phys. A 33, 107 (1984).

    Article  ADS  Google Scholar 

  26. M. Dinu, IEEE J. Quantum Electron. 39, 1498 (2003).

    Article  ADS  Google Scholar 

  27. T. F. Boggess, K. Bohnert, D. P. Norwood, C. D. Mire, and A. L. Smirl, Opt. Commun. 64, 387 (1987).

    Article  ADS  Google Scholar 

  28. T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, Opt. Lett. 9, 291 (1984).

    Article  ADS  Google Scholar 

  29. T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, and A. L. Smirl, IEEE J. Quantum Electron. 22, 360 (1986).

    Article  ADS  Google Scholar 

  30. A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).

    Article  ADS  Google Scholar 

  31. K. Katayama, Y. Inagaki, and T. Sawada, J. Appl. Phys. 92, 5233 (2002).

    Article  ADS  Google Scholar 

  32. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).

    Article  ADS  Google Scholar 

  33. M. Sheik-Bahae, A. A. Said, T. Wei, D. A. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  34. N. N. Il’ichev, A. V. Kir’yanov, V. P. Shapkin, S. A. Na- sibov, and S. Ye. Mosaleva, Appl. Phys. B 81, 83 (2003).

    Article  ADS  Google Scholar 

  35. A. V. Kir’yanov and Yu. O. Barmenkov, Appl. Phys. B 77, 613 (2003).

    Article  ADS  Google Scholar 

  36. K. Ogusu and K. Shinkawa, Opt. Express 16, 14780 (2008).

    Article  ADS  Google Scholar 

  37. N. N. Il’ichev, P. P. Pashinin, V. P. Shapkin, and A. S. Nasibov, Quantum Electron. 37, 974 (2007).

    Article  ADS  Google Scholar 

  38. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, Opt. Express 17, 3941 (2009).

    Article  ADS  Google Scholar 

  39. R. Vyas and R. Gupta, Appl. Opt. 27, 4701 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kir’yanov.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kir’yanov, A.V., Il’ichev, N.N. & Gulyamova, E.S. Nonlinear change in refractive index and transmission coefficient of silicon at long-pulse, mJ-range, 1.54-μm excitation. Laser Phys. 21, 137–147 (2011). https://doi.org/10.1134/S1054660X10230064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10230064

Keywords

Navigation