Luminescence diagnostics of malignant tumors in the IR spectral range using Yb-porphyrin metallocomplexes

Abstract

The creation and application of new low-toxic photosensitizers for the luminescence diagnostics of cancer are considered. The new photosensitizers weakly generate singlet oxygen, exhibit developed luminescence, and retain the tumor-tropic properties of the therapeutic photosensitizers. Twenty one ytterbium complexes of porphyrin compounds that differ by the substituents at the periphery of the porphyrin ring are synthesized. The absorption and luminescence spectra and the luminescence decay curves of these substances are studied. The primary toxicological and pharmacokinetic investigations are performed for the most promising compounds in the organisms of experimental animals. The experimental data prove that the Yb-porphyrin complexes are promising as low-toxic markers for the luminescence diagnostics of malignant tumors in the IR spectral range (975–985 nm) that are free of the phototoxicity typical of the conventional porphyrins at a relatively high luminescence contrast and the selective accumulation in tissue.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. F. Mironov, in Advances in Porphyrin Chemistry, Vol. IV (St.-Pb. Gos. Univ., St. Petersburg, 2004), pp. 271–292 [in Russian].

    Google Scholar 

  2. 2.

    P. F. C. Menezes, H. Imasato, J. Ferreira, V. S. Bagnato, and J. R. Perussi, Laser Phys. 17, 461 (2007).

    Article  ADS  Google Scholar 

  3. 3.

    U. Bindig, A. Ulatowska-Jarza, M. Kopaczynska, G. Müller, and H. Podbielska, Laser Phys. 18, 63 (2008).

    ADS  Google Scholar 

  4. 4.

    J. Ferreira, P. F. C. Menezes, C. Kurachi, C. Sibata, R. R. Allison, and V. S. Bagnato, Laser Phys. Lett 5, 156 (2008).

    Article  ADS  Google Scholar 

  5. 5.

    P. F. C. Menezes, H. Imasato, J. Ferreira, V. S. Bagnato, C. H. Sibata, and J. R. Perussi, Laser Phys. Lett. 5, 227 (2008).

    Article  ADS  Google Scholar 

  6. 6.

    A. B. Solovieva, N. S. Melik-Nubarov, Ò. M. Zhiyentayev, P. I. Tolstikh, I. I. Kuleshov, N. A. Aksenova, E. A. Litmanovich, N. N. Glagolev, V. A. Timofeeva, and A. V. Ivanov, Laser Phys. 19, 817 (2009).

    Article  ADS  Google Scholar 

  7. 7.

    J. Schlothauer, S. Hackbarth, and B. Röder, Laser Phys. Lett. 6, 216 (2009).

    Article  ADS  Google Scholar 

  8. 8.

    C. Lochmann, T. Hätpl, and J. Beuthan, Laser Phys. Lett. 5, 151 (2008).

    Article  ADS  Google Scholar 

  9. 9.

    A. Yu. Tauber, A. N. Nizhnik, A. F. Mironov, M. I. Gaiduk, and V. V. Grigoryants, Biofizika 34, 364 (1989) [in Russian].

    Google Scholar 

  10. 10.

    K. N. Solov’ev, M. P. Tsvirko, and T. F. Kachura, Opt. Spektrosk. 40, 684 (1976) [Opt. Spectrosc. 40, 391 (1976)].

    Google Scholar 

  11. 11.

    M. Tsvirko, Yu. Korovin, and N. Rusakova, J. Phys.: Conf. Ser. 79, 012025 (2007).

    Article  ADS  Google Scholar 

  12. 12.

    M. I. Gaiduk, V. V. Grigoryants, A. F. Mironov, V. D. Rumyantseva, V. I. Chissov, and G. M. Sukhin, J. Photochem. Photobiol. B: Biol. 7, 15 (1990).

    Article  Google Scholar 

  13. 13.

    Hong-Shan He, Zhi-Xin Zhao, Wai-Kwok Wong, King-Fai Li, Jian-Xin Meng, and Kok-Wai Cheah, Dalton Trans., 980 (2003).

  14. 14.

    W. De Horrocks and E. G. Hove, J. Am. Chem. Soc. 100, 4386 (1978).

    Article  Google Scholar 

  15. 15.

    C. P. Wong, R. F. Venteicher, and W. De Horrocks, J. Am. Chem. Soc. 96, 7149 (1974).

    Article  Google Scholar 

  16. 16.

    V. D. Rumyantseva, K. S. Shchamkhalov, LP. Shilov, V. M. Markushev, and A. V. Ivanov, Med. Phys. 4, 45 (2007) [in Russian].

    Google Scholar 

  17. 17.

    I. P. Shilov, K. S. Shchamkhalov, A. S. Ryabov, O. O. Kuznetsov, B. V. Zubov, G. L. Danielyan, and A. V. Ivanov, Med. Phys. 4, 67 (2008) [in Russian].

    Google Scholar 

  18. 18.

    V. D. Rumyantseva, A. F. Mironov, V. M. Markushev, I. P. Shilov, A. S. Ryabov, K. S. Shchamkhalov, and A. V. Ivanov, J. Porphyrins Phtalocyn. 12, 697 (2008).

    Google Scholar 

  19. 19.

    Yu. V. Korovin, N. V. Rusakova, Yu. A. Popkov, and V. P. Dotsenko, J. Appl. Spectrosc. 69, 732 (2002).

    Article  Google Scholar 

  20. 20.

    N. S. Osin, N. P. Ivanovskaya, and G. M. Sukhin, Almanac Clin. Med. 17, 69 (2008).

    Google Scholar 

  21. 21.

    V. D. Rumyantseva, V. M. Markushev, A. I. Panas, I. P. Shilov, A. V. Nechaev, E. V. Sheveleva, A. F. Mironov, A. V. Ivanov, and A. Yu. Baryshnikov, Patent RF No. 2372099 (2009).

  22. 22.

    A. Gabizon and D. Papahadjopoulos, Proc. Natl. Acad. Sci. USA 85, 6949 (1988).

    Article  ADS  Google Scholar 

  23. 23.

    M. H. Gaber, K. Hong, S. K. Huang, and D. Papahadjopoulos, Pharm. Res. 12, 1407 (1995).

    Article  Google Scholar 

  24. 24.

    E. V. Tazina and N. A. Oborotova, Russ. J. Biotherapy 7, 4 (2008).

    Google Scholar 

  25. 25.

    V. D. Rumyantseva, A. F. Mironov, K. S. Shchamkhalov, G. M. Sukhin, I. P. Shilov, V. M. Markushev, Z. V. Kuzmina, N. I. Polyanskaya, and A. V. Ivanov, Laser Med. 14, 20 (2010) [in Russian].

    Google Scholar 

  26. 26.

    Photodynamic Therapy: Basic Principles and Clinical Applications, Ed. by B. Henderson and T. J. Dougherty (Marcel Dekker, New York, 1992).

    Google Scholar 

  27. 27.

    V. B. Loshchenov, A. A. Stratonnikov, A. I. Volkova, and A. M. Prokhorov, Russ. Chem. J. 42, 50 (1998) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Text © Astro, Ltd., 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ivanov, A.V., Rumyantseva, V.D., Shchamkhalov, K.S. et al. Luminescence diagnostics of malignant tumors in the IR spectral range using Yb-porphyrin metallocomplexes. Laser Phys. 20, 2056–2065 (2010). https://doi.org/10.1134/S1054660X10220032

Download citation

Keywords

  • Porphyrin
  • Acac
  • Laser Phys
  • Laser Physics
  • Ytterbium