Skip to main content
Log in

Controlled rotation and orientation of rubrene particles and Escherichia coli using optical tweezers

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Optical trapping and rotating of suspended micro-sized rubrene particles were performed using optical tweezers with circularly polarized light. The experimental results show that the rotation speed of the rubrene particles is proportional to the laser power, and the orientation of the rubrene particles can be controlled by the optical tweezers with linearly polarized light. Interestingly, by combining with the rubrene particle, the Escherichia coli (E. coli) can be rotated and oriented by optical tweezers. However, the rotating and orientating are mainly determined by the characteristics of rubrene particles. Our experiment provides a simple and convenient way to orient biological particles even if they are not sensitive to the polarization of the laser beam. Moreover, the rubrene can emit strong fluorescence when excited by the laser at the wavelength of 532 nm, and which can be potential applied to manipulate other particles with the fluorescence characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).

    Article  ADS  Google Scholar 

  2. S. C. Kou and M. P. Sheetz, Science 260, 232 (1993).

    Article  ADS  Google Scholar 

  3. M. Dao, C. T. Lim, and S. J. Suresh, Mech. Phys. Solids 51, 2259 (2003).

    Article  ADS  Google Scholar 

  4. F. Qian, S. Ermilov, D. Murdock, W. E. Browell, and B. Anvari, Rev. Sci. Instrum. 75, 2937 (2004).

    Article  ADS  Google Scholar 

  5. C. Monat, C. Grillet, R. Domachuk, C. Smith, E. Magi, D. J. Moss, H. C. Nguyen, S. Tomljenovic-Hanic, M. Cronin-Golomb, B. J. Eggleton, D. Freeman, S. Madden, B. LutherDavies, S. Mutzenich, G. Rosengarten, and A. Mitchell, Laser Phys. Lett. 4, 177 (2007).

    Article  Google Scholar 

  6. T. Yu, F. C. Chenog, and C. H. Sow, Nanotechnology 15, 1732 (2004).

    Article  ADS  Google Scholar 

  7. S. Sato, M. Ishigure, and H. Inaba, Electron. Lett. 27, 1831 (1991).

    Article  Google Scholar 

  8. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 78, 743627 (1999).

    ADS  Google Scholar 

  9. E. Santamato, A. Sasso, B. Piccirillo, and A. Vella, Opt. Express 10, 871 (2002).

    ADS  Google Scholar 

  10. M. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, Opt. Commun. 201, 21 (2002).

    Article  ADS  Google Scholar 

  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).

    Article  ADS  Google Scholar 

  12. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).

    Article  ADS  Google Scholar 

  13. P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).

    Article  ADS  Google Scholar 

  14. V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).

    Article  ADS  Google Scholar 

  15. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).

    Article  ADS  Google Scholar 

  16. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).

    Article  ADS  Google Scholar 

  17. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, Nat. Mater. 5, 97 (2006).

    Article  ADS  Google Scholar 

  18. L. Sacconi, I. M. Tolic-Norrelykke, R. Antolini, and F. S. Pavone, J. Biomed. Opt. 10, 14002 (2005).

    Article  Google Scholar 

  19. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

    ADS  Google Scholar 

  20. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, Appl. Phys. Lett. 78, 547 (2001).

    Article  ADS  Google Scholar 

  21. X. D. Sun, X. C. Li, and J. L. Zhang, J. Nonlinear Opt. Phys. Mater. 17, 387 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Sun.

Additional information

Original Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.C., Sun, X.D. Controlled rotation and orientation of rubrene particles and Escherichia coli using optical tweezers. Laser Phys. 20, 1774–1777 (2010). https://doi.org/10.1134/S1054660X10150120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10150120

Keywords

Navigation