Skip to main content
Log in

High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

In this paper, we present using Nd:YAG as the laser media, and Brewster plate as a polarizer device to obtain the linear polarization output at the fundamental wavelength. Using LBO (LiB3O5) crystal as non-linear crystal to obtain intra-cavity frequency doubled red laser at 659 and 669 nm and sum frequency mixing at 665 nm. Using a thin fused silica plate as an etalon to obtain the single wavelength operation. At total pump power of 30 W at 808 nm, the output powers at two wavelengths are about 4.1 and 4.5 W, respectively, only one fundamental wavelength light is resonating. The corresponding optical to optical conversion efficiency from pump light to second harmonic generation are 13.7 and 15.0%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. W. French, R. Mellish, J. R. Taylor, P. J. Delfyett, and L. T. Florez, Opt. Lett. 18, 1934 (1993).

    Article  ADS  Google Scholar 

  2. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).

    Article  ADS  Google Scholar 

  3. R. Zhou, S. C. Ruan, C. L. Du, and J. Q. Yao, Opt. Commun. 282, 605 (2009).

    Article  ADS  Google Scholar 

  4. A. Agnesi, A. Guandalini, and G. Reali, J. Opt. Soc. Am. B 19, 1078 (2002).

    Article  ADS  Google Scholar 

  5. H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, Opt. Exp. 12, 3543 (2004).

    Article  ADS  Google Scholar 

  6. A. Y. Yao, W. Hou, X. C. Lin, Y. Bi, R. N. Li, D. F. Cui, and Z. Y. Xu, Opt. Commun. 231, 413 (2004).

    Article  ADS  Google Scholar 

  7. L. Zhang, D. H. Li, Z. Y. Wei, B. H. Feng, P. M. Fu, and Z. G. Zhang, Chin. Phys. Lett. 22, 120 (2005).

    Article  ADS  Google Scholar 

  8. A. Agnesi, G. C. Reali, and P. G. Gobbi, IEEE J. Quantum Electron. 34, 297 (1998).

    Google Scholar 

  9. R. Sarrouf, V. Sousa, T. Badr, G. B. Xu, and J. J. Zondy, Opt. Lett. 32, 2732 (2007).

    Article  ADS  Google Scholar 

  10. R. Zhou, X. Ding, W. Q. Wen, Z. Q. Cai, P. Wang, and J. Q. Yao, Chin. Phys. Lett. 23, 849 (2006).

    Article  ADS  Google Scholar 

  11. Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, IEEE J. Quantum Electron. 35, 1737 (1999).

    Article  ADS  Google Scholar 

  12. X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, Appl. Phys. B 86, 265 (2007).

    Article  ADS  Google Scholar 

  13. F. Chen, J. Liu, W. W. Wang, X. W. Fan, and L. J. Qin, Laser Phys. Lett. 6, 441 (2009).

    Article  Google Scholar 

  14. F. Q. Jia, Laser Phys. Lett. 6, 850 (2009).

    Article  Google Scholar 

  15. J. Marling, IEEE J. Quantum Electron. 14, 56 (1978).

    Article  ADS  Google Scholar 

  16. Y. Yao, Q. Zheng, D. P. Qu, K. Zhou, Y. Liu, and L. Zhao, Laser Phys. Lett. 7, 112 (2010).

    Google Scholar 

  17. T. J. Whitley, J. Lightwave Technol. 13, 1744–1760 (1995).

    Article  Google Scholar 

  18. J. P. Boquillon, O. Musset, H. Guillet, and S. Roy, in Proc. of the Intern. Conf. on Lasers and Electro-Optics (IEEE, 1999).

  19. J. Fanta, V. Mandys, and L. Horák, Lasers Med. Sci. 5, 317 (1990).

    Article  Google Scholar 

  20. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, J. Chen, W. D. Chen, and Z. Q. Chen, Appl. Opt. 46, 384 (2006).

    Google Scholar 

  21. L. X. Huang, G. Zhang, C. H. Huang, Y. Wei, and H. Y. Zhu, J. Russ. Laser Res. 29, 593 (2008).

    Article  Google Scholar 

  22. F. Q. Jia, Q. Zheng, Q. H. Xue, Y. K. Bu, and L. S. Qian, Opt. Commun. 259, 212 (2006).

    Article  ADS  Google Scholar 

  23. H. B. Peng, W. Hou, Y. H. Chen, D. F. Cui, Z. Y. Xu, C. T. Chen, F. D. Fan, and Y. Zhu, Opt. Exp. 14, 3961 (2006).

    Article  ADS  Google Scholar 

  24. T. Yang, J. J. Wang, D. S. Jiang, H. Zhao, X. B. Liang, S. Y. Zhao, and L. G. Yuan, Chin. J. Laser 34 (2007).

  25. B. T. Zhang, J. F. Yang, J. L. He, H. T. Huang, X. L. Dong, J. L. Xu, C. H. Zuoand, and K. J. Yang, Laser Phys. 19, 1389 (2009).

    Article  ADS  Google Scholar 

  26. Y. F. Lu, X. H. Zhang, J. Xia, X. D. Yin, L. Bao, and H. Quan, Laser Phys. (2010), DOI: 10.1134/S1054660X10010147.

  27. Y. F. Lu, X. H. Zhang, J. Xia, X. D. Yin, A. F. Zhang, L. Bao, D. Wang, and H. Quan, Laser Phys. 19, 2174 (2009).

    Article  ADS  Google Scholar 

  28. Y. F. Lu, X. D. Yin, J. Xia, R. G. Wang, and D. Wang, Laser Phys. Lett. 7, 25 (2010).

    Article  Google Scholar 

  29. J. Gao, X. Yu, X. D. Li, F. Chen, K. Zhang, R. P. Yan, J. H. Yu, and Y. Z. Wang, Laser Phys. 19, 111 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Q. Jia.

Additional information

Original Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, F.Q. High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm. Laser Phys. 20, 1559–1563 (2010). https://doi.org/10.1134/S1054660X10130062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10130062

Keywords

Navigation