Skip to main content
Log in

Review of recent efforts on efficient generation of monochromatic THz pulses based on difference-frequency generation

  • Modern Trends in Laser Physics
  • Published:
Laser Physics

Abstract

We review our recent efforts on power scaling of THz pulses generated from several nonlinear-optical crystals. By using a high-resistivity GaP crystal, we have significally increased the output peak power to as high as 722 W. By stacking three GaP wafers, we have further increased the highest output peak power to 2.36 kW. On the other hand, by using CO2 laser pulses, we have obtained the average output power of 260 μW. We have also used these laser pulses to scale up the output power for the THz pulses to 29.8 μW by stacking GaAs wafers. Indeed, by stacking up to ten wafers, we have increased the output power by a factor of 160. Finally, by using ultrafast laser pulses, we have achieved record-high output powers for the THz pulses generated from multi-period periodically-poled LiNbO3 crystals based on a backward configuration. The highest output power obtained by us so far is 10.7 μW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett. 91, 131122 (2007).

    Article  ADS  Google Scholar 

  2. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).

    Article  ADS  Google Scholar 

  3. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 89, 141125 (2006).

    Article  ADS  Google Scholar 

  4. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).

    Article  ADS  Google Scholar 

  5. L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).

    Article  ADS  Google Scholar 

  6. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    Article  ADS  Google Scholar 

  7. M. C. Nuss and J. Orenstein, in Millimeter and Submillimeter Wave Spectroscopy of Solids, Ed. by G. Gruner (Springer, Berlin, 1998), p. 7.

    Chapter  Google Scholar 

  8. P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).

    Article  ADS  Google Scholar 

  9. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).

    Article  ADS  Google Scholar 

  10. T. Yasuda, T. Yasui, T. Araki, and E. Abraham, Opt. Commun. 267, 128 (2006).

    Article  ADS  Google Scholar 

  11. Y. J. Ding and I. B. Zotova, Int. J. Nonl. Opt. Phys. Mats. 11, 75–97 (2002); Opt. Quant. Electron. 32, 531–552 (2000); Opt. Commun. 148, 105 (1998); J. Nonl. Opt. Phys. Mats. 12, 557 (2003).

    Article  Google Scholar 

  12. Y. J. Ding, invited, IEEE J. Sel. Top. Quantum Electron. 13, 705 (2007).

    Article  Google Scholar 

  13. W. Shi and Y. J. Ding, Int. J. High Speed Electron. Sys. 16, 589 (2006).

    Article  MathSciNet  Google Scholar 

  14. W. Shi and Y. J. Ding, Appl. Phys. Lett. 83, 848 0 (2003); W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004); W. Shi and Y. J. Ding, in Optics in 2002, Opt. Photon. News (Dec. 2002), p. 57.

    Google Scholar 

  15. W. Shi and Y. J. Ding, CLEO 2004, CMI5; Opt. Lett. 30, 1030 (2005); Sol. State Electron. 50, 1128 (2006).

    Article  ADS  Google Scholar 

  16. G. Kh. Kitaeva, Laser Phys. Lett. 5, 559 (2008).

    Article  Google Scholar 

  17. Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).

    Article  ADS  Google Scholar 

  18. Y. Jiang and Y. J. Ding, Appl. Phys. Lett. 91, 091108/1–3 (2007).

    ADS  Google Scholar 

  19. Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 93, 241102/1–3 (2008).

    ADS  Google Scholar 

  20. G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, Opt. Lett. 34, 995 (2009).

    Article  ADS  Google Scholar 

  21. L. P. Gonzalez, S. Guha, and S. Trivedi, CLEO Technical Digest on CD-ROM (OSA, Washington, DC, 2004), CWA47.

    Google Scholar 

  22. F. L. Madarasz, J. O. Dimmock, N. Dietz, and J. Bachmann, J. Appl. Phys. 87, 1564 (2000).

    Article  ADS  Google Scholar 

  23. V. G. Dmitriviev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, Berlin, 1999), p. 169.

    Google Scholar 

  24. F. Zernike, Bull. Am. Phys. Soc. 12, 687 (1967).

    Google Scholar 

  25. D. E. Thompson and P. D. Coleman, IEEE Tran. Micro. Theo. Tech. 22, 995 (1974).

    Article  ADS  Google Scholar 

  26. F. Zernike, Phys. Rev. Lett. 22, 931 (1969).

    Article  ADS  Google Scholar 

  27. R. L. Aggarwal and B. Lax, Optical Mixing of CO2 Lasers in the Far-infrared,” in Nonlinear Infrared Generation (Springer, New York, 1977), pp. 19–80.

    Google Scholar 

  28. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1454 (2002).

    Article  ADS  Google Scholar 

  29. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 378, 401.

    Google Scholar 

  30. W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).

    Article  ADS  Google Scholar 

  31. G. D. Boyd, T. J. Bridges, and C. K. N. Patel, Appl. Phys. Lett. 21, 553 (1972).

    Article  ADS  Google Scholar 

  32. S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).

    Article  ADS  Google Scholar 

  33. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 326.

    Google Scholar 

  34. T. Skauli, P. S. Kou, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).

    Article  ADS  Google Scholar 

  35. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18, 290 (1993).

    Article  ADS  Google Scholar 

  36. M. Reid, I. V. Cravetchi, and R. Fedosejevs, Phys. Rev. B 72, 035201 (2005).

    Article  ADS  Google Scholar 

  37. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, Opt. Express 15, 13212 (2007).

    Article  ADS  Google Scholar 

  38. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007).

    Article  ADS  Google Scholar 

  39. Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).

    Article  Google Scholar 

  40. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).

    Article  ADS  Google Scholar 

  41. Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).

    Article  ADS  Google Scholar 

  42. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).

    Article  ADS  Google Scholar 

  43. Y. S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).

    Article  ADS  Google Scholar 

  44. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa, Appl. Phys. Lett. 93, 041104 (2008).

    Article  ADS  Google Scholar 

  45. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, Opt. Express 16, 6471 (2008).

    Article  ADS  Google Scholar 

  46. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, Opt. Lett. 31, 957 (2006).

    Article  ADS  Google Scholar 

  47. Y. J. Ding and W. Shi, IEEE J. Sel. Top. Quantum Electron. 12, 352 (2006).

    Article  Google Scholar 

  48. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 695–702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Ding.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y.J., Jiang, Y., Xu, G. et al. Review of recent efforts on efficient generation of monochromatic THz pulses based on difference-frequency generation. Laser Phys. 20, 917–930 (2010). https://doi.org/10.1134/S1054660X10090173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10090173

Keywords

Navigation