Skip to main content
Log in

Estimation of metal surface roughness using fiber optic displacement sensor

  • Novel Methods of Laser Technologies
  • Published:
Laser Physics

Abstract

A fiber optic displacement sensor is proposed to estimate the roughness of metal surface using the intensity modulation technique. A light beam is launched onto the metal surface via a bundled fiber. The reflected light from the surface is collected and then routed to a silicon detector. The level of roughness for aluminum, stainless steel and copper samples are estimated to be approximately 27, 26, and 20% respectively by fixing the object within the linear range of the sensor. The output voltages are measured as a function of lateral distance to estimate the roughness of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chang, Q. Wang, X. Zhang, L. Ma, T. Liu, Q. Wang, Z. Liu, S. Zhang, and S. Ding, “Single-end Vibration Sensor Based on an Over-Coupled Fiber-Loop Reflector,” Laser Phys. 18, 452–454 (2008).

    Article  ADS  Google Scholar 

  2. H. Arellano-Sotelo, Yu. O. Barmenkov, and A. V. Kir’yanov, “The Use of Erbium Fiber Laser Relaxation Frequency for Sensing Refractive Index and Solute Concentration of Aqueous Solutions,” Laser Phys. Lett. 5, 825–829 (2008).

    Article  Google Scholar 

  3. P. M. Sandeep, S. W. B. Rajeev, M. Sheeba, S. G. Bhat, and V. P. N. Nampoori, “Laser Induced Fluorescence Based Optical Fiber Probe for Analyzing Bacteria,” Laser Phys. Lett. 4, 611–615 (2007).

    Article  Google Scholar 

  4. I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, J. Pedersen, “Near-field Mapping of Surface Refractive-Index Distributions,” Laser Phys. Lett. 2, 440–444 (2005).

    Article  Google Scholar 

  5. M. L. Bechwith, Mechanical Measurement (Addison Wesley, Longman, 2000).

    Google Scholar 

  6. U. Person, “A Fiber-Optic Surface-Roughness Sensor,” J. Mater. Proc. Technol. 95, 107–111 (1999).

    Article  Google Scholar 

  7. A. B. Ganesh, T. K. Radhakrishnan, G. Gobi, and D. Sastikumar, “Estimation of Corrosion of Metals Using Fiber Optic Displacement Sensor System,” Sensors Transducers J. 70, 645–654 (2006).

    Google Scholar 

  8. M. Yasin, S. W. Harun, H. A. Abdul-Rashid, Kusminarto, Karyono, and H. Ahmad, “The Performance of a Fiber Optic Displacement Sensor for Different Types of Probes and Targets,” Laser Phys. Lett. 5, 55–58 (2008).

    Article  Google Scholar 

  9. M. Yasin, S. W. Harun, Samian, Kusminarto, and H. Ahmad, “Simple Design of Optical Fiber Displacement Sensor Using a Multimode Fiber Coupler,” Laser Phys. 19, 1446–1449 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Harun.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harun, S.W., Yasin, M., Yang, H.Z. et al. Estimation of metal surface roughness using fiber optic displacement sensor. Laser Phys. 20, 904–909 (2010). https://doi.org/10.1134/S1054660X10070091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10070091

Keywords

Navigation