Skip to main content
Log in

Caries resistance of lased human root surface with 10.6 μm CO2 laser-thermal, morphological, and microhardness analysis

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

Although the cariostatic effects of CO2 laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 μm CO2 laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2—2.5 J/cm2; G3—4.0 J/cm2; G4—5.0 J/cm2; and G5—6.0 J/cm2. Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5°C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm2 were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm2, laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm2 could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Galan and E. Lynch, Gerodontol. 10, 59 (1993).

    Article  Google Scholar 

  2. S. E. Marcus, T. F. Dury, L. J. Brown, and G. R. Zion, J. Dent. Res. 75, 684 (1996).

    Google Scholar 

  3. B. O. Fowler and S. Kuroda, Calcif. Tissue Int. 38, 197 (1986).

    Article  Google Scholar 

  4. A. S. Blinkhorn and R. M. Davies, Int. Dent. J. 46, 119 (1996).

    Google Scholar 

  5. S. O. Griffin, P. M. Griffin, J. L. Swann, and N. Zlobin, J. Dent. Res. 83, 634 (2004).

    Article  Google Scholar 

  6. J. D. B. Featherstone, S. H. Zhang, M. Shariati, and S. M. McCormack, Proc. SPIE 1424, 145 (1991).

    Article  ADS  Google Scholar 

  7. C. Y. Hsu, T. H. Jordan, D. N. Dederich, and J. S. Wefel, J. Dent. Res. 79, 1725 (2000).

    Article  Google Scholar 

  8. G. H. Westerman, M. J. Hicks, C. M. Flaitz, R. J. Blankenau, G. L. Powell, and J. H. Berg, J. Am. Dent. Assoc. 125, 401 (1994).

    Google Scholar 

  9. X. L. Gao, J. S. Pan, and C. Y. Hsu, J. Dent. Res. 85, 919 (2006).

    Article  Google Scholar 

  10. L. Zach and G. Cohen, Oral Surg. 19, 515 (1965).

    Article  Google Scholar 

  11. D. G. Nelson, M. Shariati, R. Glena, C. P. Shields, and J. D. B. Featherstone, Caries Res. 20, 289 (1986).

    Article  Google Scholar 

  12. D. G. Nelson, J. S. Wefel, W. L. Jongebloed, and J. D. B. Featherstone, Caries Res. 21, 411 (1987).

    Article  Google Scholar 

  13. L. E. H. de Andrade, R. F. Z. Lizarelli, J. E. P. Pelino, V. S. Bagnato, and O. B. de Oliveira, Jr., Laser Phys. Lett. 4, 457 (2007).

    Article  Google Scholar 

  14. L. E. H. de Andrade, J. E. P. Pelino, R. F. Z. Lizarelli, V. S. Bagnato, and O. B. de Oliveira, Jr., Laser Phys. Lett. 4, 157 (2007).

    Article  Google Scholar 

  15. L. Bachmann, K. Rosa, P. A. da Ana, D. M. Zezell, A. F. Craievich, and G. Kellermann, Laser Phys. Lett. 6, 159 (2009).

    Article  Google Scholar 

  16. T. M. Marraccini, L. Bachmann, H. A. Wigdor, J. T. Walsh, Jr., M. L. Turbino, A. Stabholtz, and D. M. Zezell, Laser Phys. Lett. 3, 96 (2006).

    Article  Google Scholar 

  17. T. M. Marraccini, L. Bachmann, H. A. Wigdor, J. T. Walsh, Jr., A. Stabholtz, and D. M. Zezell, Laser Phys. Lett. 2, 551 (2005).

    Article  Google Scholar 

  18. D. A. M. P. Malta, M. M. Costa, J. E. P. Pelino, M. F. de Andrade, and R. F. Z. Lizarelli, Laser Phys. Lett. 5, 144 (2008).

    Article  Google Scholar 

  19. S. Kantola, Acta Odontol. Scand. 31, 369 (1973).

    Article  Google Scholar 

  20. D. G. Nelson, W. L. Longebloed, and J. D. B. Featherstone, N. Z. Dent. J. 82, 74 (1986).

    Google Scholar 

  21. C. P. Lin, B. S. Lee, S. H. Kok, W. H. Lan, Y. C. Tseng, and F. H. Lin, J. Mater. Sci. Mater. Med. 11, 373 (2000).

    Article  Google Scholar 

  22. D. N. Dederich, JADA 124, 57 (1993).

    Google Scholar 

  23. R. Z. LeGeros, Monogr. Oral Sci. 15, 108 (1991).

    Google Scholar 

  24. Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin, Lasers Med. Sci. 23, 41 (2008).

    Article  Google Scholar 

  25. C. Apel, J. Meister, H. Gotz, H. Duschner, and N. Gutknecht, Caries Res. 39, 65 (2005).

    Article  Google Scholar 

  26. K. Kawasaki and J. D. B. Featherstone, J. Dent. Res. 76, 588 (1997).

    Article  Google Scholar 

  27. L. Ceballos, D. G. Camejo, M. V. Fuentes, R. Osorio, M. Toledano, R. M. Carvalho, and D. H. Pashley. J. Dent. 31, 469 (2003).

    Article  Google Scholar 

  28. J. D. B. Featherstone, N. A. Barrett-Vespone, D. Fried, Z. Kantorowitz, and W. Seka, J. Dent. Res. 77, 1397 (1998).

    Article  Google Scholar 

  29. J. D. Featherstone, J. M. ten Cate, M. Shariati, and J. Arends, Caries Res. 17, 385 (1983).

    Article  Google Scholar 

  30. J. D. Featherstone, M. Shariati, S. Brugler, J. Fu, and D. J. White, Caries Res. 22, 337 (1988).

    Article  Google Scholar 

  31. H. G. D. Boari, P. A. Ana, C. P. Eduardo, G. L. Powell, and D. M. Zezell, Laser Phys. 19, 1463 (2009).

    Article  ADS  Google Scholar 

  32. C. Steiner-Oliveira, L. K. A. Rodrigues, L. E. S. Soares, A. A. Martin, D. M. Zezell and M. Nobre-dos-Santos, Dent. Mater. J. 25, 455 (2006).

    Article  Google Scholar 

  33. D. G. Nelson, W. L. Longebloed, and J. D. B. Featherstone, N. Z. Dent. J. 82, 74 (1986).

    Google Scholar 

  34. J. D. B. Featherstone, Dent. Clin. North Am. 44, 955 (2000).

    Google Scholar 

  35. R. H. Stern, J. Vahl, and R. F. Sognnaes, J. Dent. Res. 51, 455 (1972).

    Google Scholar 

  36. L. K. A. Rodrigues, M. Nobre dos Santos, and J. D. B. Featherstone, J. Dent. Res. 85, 617 (2006).

    Article  Google Scholar 

  37. P. A. Ana, L. Bachmann, and D. M. Zezell, Laser Phys. 16, 865 (2006).

    Article  ADS  Google Scholar 

  38. S. Kuroda and B. O. Fowler, Calcif. Tissue Int. 36, 361 (1984).

    Article  Google Scholar 

  39. J. M. Ferreira, J. Palamara, P. P. Phakey, W. A. Rachinger, and H. J. Orams, Arch. Oral Biol. 34, 551 (1989).

    Article  Google Scholar 

  40. S. M. McCormack, D. Fried, J. D. B. Featherstone, R. E. Glena, and W. Seka, J. Dent. Res. 74, 1702 (1995).

    Article  Google Scholar 

  41. M. Esteves-Oliveira, C. Apel, N. Gutknecht, W. F. Velloso, M. E. B. Cotrim, C. P. Eduardo, and D. M. Zezell, Laser Phys. 18, 478 (2008).

    Article  ADS  Google Scholar 

  42. R. de F. Z. Lizarelli, L. T. Moriyama, J. R. P. Jorge, and V. S. Bagnato, Laser Phys. 16, 849 (2006).

    Article  ADS  Google Scholar 

  43. M. Youssef, A. Quinelato, F. Youssef, J. E. Pelizon Pelino, M. C. Salvadori, and M. Mori, Laser Phys. 18, 472 (2008).

    Article  ADS  Google Scholar 

  44. R. F. Z. Lizarelli, M. M. Costa, E. Carvalho-Filho, F. D. Nunes, and V. S. Bagnato, Laser Phys. Lett. 5, 63 (2008).

    Article  Google Scholar 

  45. H. S. Malmström, S. M. McCormack, D. Fried, and J. D. B. Featherstone, J. Dent. 29, 521 (2001).

    Article  Google Scholar 

  46. H. A. Widgor, J. T. Walsh, Jr., J. D. B. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, Lasers Surg. Med. 16, 103 (1995).

    Article  Google Scholar 

  47. Z. Kantorowitz, J. D. B. Featherstone, and D. Fried, J. Am. Dent. Assoc. 129, 585 (1998).

    Google Scholar 

  48. S. Kantola, Acta Odontol. Scand. 30, 463 (1972).

    Article  Google Scholar 

  49. S. Nammour, C. Renneboog-Squilbin, and C. Nyssen-Behets. Caries Res. 26, 170 (1992).

    Article  Google Scholar 

  50. C. Y. Hsu, T. H. Jordan, D. N. Dederich, and J. S. Wefel, J. Dent. Res. 79, 1725 (2000).

    Article  Google Scholar 

  51. J. D. B. Featherstone, Am. J. Dent. 7, 271 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. de Souza-Zaroni.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza-Zaroni, W.C., Freitas, A.C.P., Hanashiro, F.S. et al. Caries resistance of lased human root surface with 10.6 μm CO2 laser-thermal, morphological, and microhardness analysis. Laser Phys. 20, 537–543 (2010). https://doi.org/10.1134/S1054660X10030151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10030151

Keywords

Navigation