Skip to main content
Log in

Generation of continuously tunable terahertz-wave radiation exploited by stimulated polariton scattering

  • Nonlinear and Quantum Optics
  • Published:
Laser Physics

Abstract

The characteristics of a coherent tunable terahertz-wave source have been experimentally investigated in detail. By using a difference frequency generation as a result of stimulated Raman scattering by polaritons in MgO:LiNbO3 crystals, the signal wave was continuously tuned in the range of 1.069–1.075 μm, which corresponded to a terahertz-wave in the wide range from 227 to 104 μm (1.3 to 2.9 THz). The highest output signal pulse energy at the pumping level of 44 mJ/pulse was 1.8 mJ/pulse with 20 mW seeder injection, and the terahertz peak power was 139 mW at the wavelength of 143 μm. This source has the advantages of simple alignment, simplicity of tuning, and compactness that makes the device more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, Opt. Lett. 24, 202 (1999).

    Article  ADS  Google Scholar 

  2. R. Guo, K. Akiyama, H. Minamide, and H. Ito, Appl. Phys. Lett. 88, 091120 (2006).

    Google Scholar 

  3. R. Guo, K. Akiyama, H. Minamide, and H. Ito, Appl. Phys. Lett. 90, 121127 (2007).

    Google Scholar 

  4. G. Kh. Kitaeva, Laser Phys. Lett. 5, 559 (2008).

    Article  Google Scholar 

  5. Y. J. Ding and J. B. Khurgin, Opt. Commun. 148, 105 (1998).

    Article  ADS  Google Scholar 

  6. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, Opt. Express 15, 6478 (2007).

    Article  ADS  Google Scholar 

  7. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000).

    Article  ADS  Google Scholar 

  8. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, Appl. Phys. Lett. 15, 102 (1969).

    Article  ADS  Google Scholar 

  9. B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, Appl. Phys. Lett. 18, 181 (1971).

    Article  ADS  Google Scholar 

  10. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett. 26, 418 (1975).

    Article  ADS  Google Scholar 

  11. Y. R. Shen, Stimulated Polariton Scattering: The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 169–172.

    Google Scholar 

  12. S. Kojima, Jpn. J. Appl. Phys. Part. 1 32, 4373 (1993).

    Article  Google Scholar 

  13. S. S. Sussman, Tunable Scattering from Transverse Optical Modes in Lithium Niobate (Microwave Lab. Report No. 1851, Stanford Univ., 1970), pp. 26–40.

  14. S. Wu, V. A. Kainus, and G. A. Blake, Opt. Commun. 159, 74 (1999).

    Article  ADS  Google Scholar 

  15. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 71, 753 (1997).

    Article  ADS  Google Scholar 

  16. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).

    Article  ADS  Google Scholar 

  17. K. Kawase, K. Karino, T. Taniuchi, and H. Ito, IEEE Trans. Microwave Theor. Tech. 48, 653 (2000).

    Article  Google Scholar 

  18. S. Kojima, Jpn. J. Appl. Phys. Part. 1 32, 4373 (1993).

    Article  Google Scholar 

  19. H. C. Guo, W. M. Liu, and S. H. Tang, J. Appl. Phys. Part. 102, 033105 (2007).

    Google Scholar 

  20. K. Kawase, J. Shikata, and H. Ito, J. Phys. D: Appl. Phys. 34, R1 (2001).

    Article  ADS  Google Scholar 

  21. C. H. Henry and A. G. B. Garret, Phys. Rev. 171, 1058 (1968).

    Article  ADS  Google Scholar 

  22. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18, 290 (1993).

    Article  ADS  Google Scholar 

  23. E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor, IEEE J. Quantum Electron. 32, 1839 (1996).

    Article  ADS  Google Scholar 

  24. M. Mikulics, E. A. Michael, M. Marso, M. Lepsa, A. van der Hart, H. Lüth, A. Dewald, S. Stancek, M. Mozolik, and P. Kordoš, Appl. Phys. Lett. 89, 071103 (2006).

    Google Scholar 

  25. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, Semicond. Sci. Technol. 20, S191 (2005).

    Article  ADS  Google Scholar 

  26. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, Phys. Rev. B 64, 085202 (2001).

    Google Scholar 

  27. X. Mu, Y. J. Ding, and Yu. B. Zotova, Opt Lett. 32, 3321 (2007).

    Article  ADS  Google Scholar 

  28. T. Taniuchi and H. Nakanishi, Electron. Lett. 40, 327 (2004).

    Article  Google Scholar 

  29. T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).

    Article  ADS  Google Scholar 

  30. Y. Jiang and Y. J. Ding, Appl. Phys. Lett. 91, 091108 (2007).

    Google Scholar 

  31. T. L’offler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, Opt. Express 13, 5353 (2005).

    Article  ADS  Google Scholar 

  32. E. A. Michael, Semicond. Sci. Technol. 20, S164 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-J. Liu.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, CP., Li, XF., Liu, HJ. et al. Generation of continuously tunable terahertz-wave radiation exploited by stimulated polariton scattering. Laser Phys. 19, 1897–1903 (2009). https://doi.org/10.1134/S1054660X09170228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09170228

PACS numbers

Navigation