Skip to main content
Log in

A treatment of the emission and absorption spectra of a general formalism V-type three-level atom driven by a single-mode field with nonlinearities

  • Nonlinear and Quantum Optics
  • Published:
Laser Physics

Abstract

A treatment of a V-type three-level atom interacting with a single mode field in a cavity, taking explicitly the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling into account. Analytical expressions of the emission and absorption spectra are presented using the dressed states of the system. The characteristics of the emission and absorption spectra for a binomial state and a squeezed coherent state inputs are exhibited. The effects of the mean number of photons, detuning and the nonlinearities on the spectra are investigated. It is shown that features of the fluorescence and absorption spectra are influenced significantly by the kinds of the nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. Shore and P. L. Knight, “Topical Review. The Jaynes-Cummings Model,” J. Mod. Opt. 40, 1195 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. R. Lofstedt and S. N. Coppersmith, “Quantum Stochastic Resonance,” Phys. Rev. Lett. 72, 1947 (1994).

    Article  ADS  Google Scholar 

  3. J. A. Andersen and V. M. Kenkre, “Self-Trapping and Time Evolution in Some Spatially Extended Quantum Nonlinear Systems: Exact Solutions,” Phys. Rev. B 47, 11134 (1993).

    Article  ADS  Google Scholar 

  4. S. Machida Y. Yamamoto, and G. Bjork, “Micro-Cavity Semiconductor Lasers With Controlled Spontaneous Emission,” Opt. Quantum Electron. 24, S215 (1992).

    Article  Google Scholar 

  5. D. W. G. Laughlin and S. Swain, “The Theory of the Two-Photon Micromaser,” Quantum Opt. 3, 77 (1991).

    Article  ADS  Google Scholar 

  6. L. Davidovich, P. A. Maia Neto, and J. M. Raimond, “Theory of the Nondegenerate Two-Photon Micromaser,” Phys. Rev. A 43, 5073 (1991).

    Article  ADS  Google Scholar 

  7. Y. Yamamoto and R. E. Slusher, “Optical Processes in Microcavities,” Phys. Today 46, 66 (1993).

    Article  Google Scholar 

  8. Hui Cao G. Bjork J. Jacobsen, S. Pau, and Y. Yamamoto, “Observation of Exciton-Polariton Oscillating Emission in a Single-Quantum-Well Semiconductor Microcavity,” Phys. Rev. A 51, 2542 (1995).

    Article  ADS  Google Scholar 

  9. V. Savona, L. C. Andrcani, P. Schwendimann, and A. Quattropani, “Quantum Well Excitons in Semiconductor Microcavities: Unified Treatment of Weak and Strong Coupling Regimes,” Solid State Commun. 93, 733 (1995).

    Article  ADS  Google Scholar 

  10. Jia-Ren Liu and Yu-Zhu Wang, “Motion-Quantized Jaynes-Cummings Models With an Arbitrary Intensity-Dependent Medium,” Phys. Rev. A 54, 2326 (1996).

    Article  ADS  Google Scholar 

  11. W. Vogel and R. L. De Matos Filho, “Nonlinear Jaynes-Cummings Dynamics of a Trapped Ion,” Phys. Rev. A 52, 4214 (1995).

    Article  ADS  Google Scholar 

  12. R. L. De Matos Filho and W. Vogel, “Nonlinear Coherent States,” Phys. Rev. A 54, 4560 (1996).

    Article  ADS  Google Scholar 

  13. R. L. De Matos Filho and W. Vogel, “Engineering the Hamiltonian of a Trapped Ion,” Phys. Rev. A 58, 2326 (1998).

    Google Scholar 

  14. K. Zaheer and M. S. Zubairy, “Phase Sensitivity in Atom-Field Interaction Via Coherent Superposition,” Phys. Rev. A 39, 2000 (1989).

    Article  ADS  Google Scholar 

  15. P. Zhou, S. Swain, G.-X. Li, and J.-S. Peng, “Atomic Emission Spectrum Including Virtual Photon Transitions in a Cavity,” Opt. Commun. 134, 455 (1997).

    Article  ADS  Google Scholar 

  16. C. Hooijer, G.-X. Li, K. Allaart, and D. Lenstra, “Spontaneous Emission in a V-Type Three-Level Atom Driven by a Classical Field,” Phys. Lett. A 263, 250 (1999).

    Article  ADS  Google Scholar 

  17. Z. Ficek and P. D. Drummond, “Three-Level Atom in a Broadband Squeezed Vacuum Field. I. General Theory,” Phys. Rev. A 43, 6247 (1991).

    Article  ADS  Google Scholar 

  18. S. Smart and S. Swain, “Three-Level Atom in a Squeezed Vacuum II. Resonance Fluorescence,” J. Mod. Opt. 41, 1055 (1994).

    Article  ADS  Google Scholar 

  19. A. S. Parkins, in Modern Nonlinear Optics, Ed. by M. Evans and S. Kielich (Wiley, New York, 1993).

    Google Scholar 

  20. B. J. Dalton, M. R. Ferguson, and Z. Ficek, “Resonance Fluorescence Spectra of Three-Level Atoms in a Squeezed Vacuum,” Phys. Rev. A 54, 2379 (1996).

    Article  ADS  Google Scholar 

  21. B. J. Dalton, M. Bostick, and Z. Fizec, “Probe Absorption Spectra for Driven Atomic Systems in a Narrow Bandwidth Squeezed Vacuum,” Phys. Rev. A 53, 4439 (1996).

    Article  ADS  Google Scholar 

  22. A. Joshi and R. R. Puri, “Steady-state Behavior of Three-Level Systems in a Broadband Squeezed Bath,” Phys. Rev. A 45, 2025 (1992).

    Article  ADS  Google Scholar 

  23. Z. Ficek, B. J. Dalton, and S. Swain, “Atoms in Squeezed Light Fields,” J. Mod. Opt. 46, 379 (1999).

    ADS  Google Scholar 

  24. O. G. Calderón, F. Carreño, and M. A. Antón, “Quantum Interference Effects in Resonance Fluorescence and Absorption Spectra of a V-type Three-Level Atom Damped by a Broadband Squeezed Vacuum,” Opt. Commun. 221, 365 (2003).

    Article  ADS  Google Scholar 

  25. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  26. Y. Yamamoto, “Preparation Measurement and Information Capacity of Optical Quantum States,” Rev. Mod. Phys. 58, 1001 (1986).

    Article  ADS  Google Scholar 

  27. R. Loudon and P. L. Kinght, “Special Issue on the Squeezed Light,” J. Mod. Opt. 34, 709 (1987).

    Article  MATH  ADS  Google Scholar 

  28. D. Stoler, “Equivalence Classes of Minimum Uncertainty Packets,” Phys. Rev. D 1, 3217 (1970).

    Article  ADS  Google Scholar 

  29. H. P. Yuen, “Two-Photon Coherent States of the Radiation Field,” Phys. Rev. A 13, 2226 (1976).

    Article  ADS  Google Scholar 

  30. V. V. Dodonov, “Nonclassical States in Quantum Optics: A Squeezed Review of the First 75 Years,” J. Opt. B 4, R1 (2002).

    ADS  MathSciNet  Google Scholar 

  31. D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial States of the Quantized Radiation Field,” Opt. Acta 33, 345 (1985).

    MathSciNet  Google Scholar 

  32. P. Roy and B. Roy, “A Generalized Nonclassical State of the Radition Field and Some of Its Properties,” J. Phys. A: Math. Gen. 30, L719 (1997).

    Article  MATH  ADS  Google Scholar 

  33. Hong-Yi Fan and Nai-le Liu, “New Generalized Binomial States of the Quantized Radiation Field,” Phys. Lett. A 264, 154 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. D. V. Averin and C. Bruder, “Variable Electrostatic Transformer: Controllable Coupling of Two Charge Qubits,” Phys. Rev. Lett. 91, 057003 (2003).

    Google Scholar 

  35. J. H. Eberly and K. Wodkiewicz, “The Time-dependent Physical Spectrum of Light,” J. Opt. Soc. Am. 67, 1252 (1977).

    Article  ADS  Google Scholar 

  36. Hong Guo and Jin-Sheng Peng, “Emission Spectrum of a Λ-type Three-level Atom Driven by the Squeezed Coherent Field and Grey-Body Radiation Field,” J. Mod. Opt. 48, 1255 (2001).

    Google Scholar 

  37. Shi-Yao Zhu, Ricky C. F. Chan, and Chin Pang Lee, “Spontaneous Emission From a Three-level Atom,” Phys. Rev. A 52, 710 (1995).

    Article  ADS  Google Scholar 

  38. G. Xiang Li, K. Allaart, Ch. Hooijer, and D. Lenstra, “Spontaneous Emission in a V-type Three-level Atom Driven by a Classical Field,” Phys. Lett. A 263, 250 (1999).

    Article  ADS  Google Scholar 

  39. Po Dong and Sing Hai Tang, “Absorption Spectrum of a V-type Three-level Atom Driven by a Coherent Field,” Phys. Rev. A 65, 033816 (2002).

    Google Scholar 

  40. C. Cohen-Tannoudji and S. Reynaud, “Dressed-Atom Description of Resonance Fluorescence and Absorption Spectra of a Multi-level Atom in an Intense Laser Beam,” J. Phys. B 10, 345 (1977).

    Article  ADS  Google Scholar 

  41. C. Cohen-Tannoudji and S. Reynaud, “Simultaneous Saturation of Two Atomic Transitions Sharing a Common Level,” J. Phys. B 10, 2311 (1977).

    Article  ADS  Google Scholar 

  42. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Eied.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obada, A.S.F., Eied, A.A. & Abd Al-Kader, G.M. A treatment of the emission and absorption spectra of a general formalism V-type three-level atom driven by a single-mode field with nonlinearities. Laser Phys. 19, 1434–1445 (2009). https://doi.org/10.1134/S1054660X09070111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09070111

PACS numbers

Navigation