Skip to main content
Log in

Polarization-dependent two-color dispersion wave generation and evolution in polarization-maintaining photonic crystal fiber

  • Fiber Optics
  • Published:
Laser Physics

Abstract

We investigate the effect of the polarization state of the input pulses on the visible emissions in the anomalous dispersion region of polarization-maintaining photonic crystal fiber (PM-PCF), by using ∼100 fs pump pulses whose central wavelength (1064 nm) is close to the second zero dispersion wavelength (1100 nm) of the fiber, where the soliton fission mechanisms play an important role. The experimental results show that the phase-matching two-color dispersive wave emission, one at 582 nm and the other at 600 nm, is polarization-dependent and frequency shift results from the different dispersion characteristics along the two orthogonal principal axes of PM-PCF. Furthermore, it is observed for the first time that the variation of the linear input polarization angles in 45° region almost has no influence on the output spectral profiles, and the break variation of the output spectrum exists when the angle between the polarization of the linear incident pulse and the fast-axis or the slow-axis of PM-PCF is 45°, which are attributed to the coupling between the two polarization modes in high birefringent PM-PCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Fan, Z. He, and K. Hotate, “Novel Distributed Fiber-Optic Strain Sensor by Localizing Dynamic Grating in Polarization-Maintaining Erbium-Doped Fiber: Proposal and Theoretical Analysis,” J. Appl. Phys. 44, 1101–1106 (2005).

    Article  Google Scholar 

  2. Xinyu Fan, Zuyuan He, and Kazuo Hotate, “Novel Strain- and Temperature-Sensing Mechanism Based on Dynamic Grating in Plarization-Maintaining Erbium-Doped Fiber,” Opt. Express 14, 556–561 (2005).

    Article  ADS  Google Scholar 

  3. C. H. Kwok, Lixin Xu, and P. K. A. Wai, “Novel Polarization Maintaining Actively Mode Locked Fiber Ring Laser,” in Proc. of the Conf. on Lasers and Electro-Optics, paper CWA82 (2004).

  4. Yufei Bao, Kevin Hsu, and C. M. Miller, “Polarization-Maintaining Fiber Fabry-Perot Tunable Filters,” Opt. Lett. 19, 2098–2100 (1993).

    Article  ADS  Google Scholar 

  5. Do-Hyun Kim and Jin U. Kang, “Sagnac Loop Interferometer Based on Polarization Maintaining Photonic Crystal Fiber with Reduced Temperature Sensitivity,” Opt. Express 12, 4490–4495 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra Low Loss and Long Length Photonic Crystal Fiber,” in Proc. of the Optical Fiber Communication Conference OFC 2003, OSA Proc. Ser. (Opt. Soc. of America, Washington, DC, 2003), postdeadline paper PD1.

    Google Scholar 

  7. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 m,” in Proc. of the Optical Fiber Communication Conf. OFC 2002, Vol. 70 of OSA Proc. Ser. (Opt. Soc. of America, Washington, DC, 2002), postdeadline paper FA9.

    Google Scholar 

  8. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum Generation at 1.55 m in a Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber,” Opt. Express 11, 1537–1540 (2003).

    Article  ADS  Google Scholar 

  9. J. H. Lin, K. H. Lin, C. C. Hsu, W. H. Yang, and W. F. Hsieh, “Supercontinuum Generation in a Microstructured Optical Fiber by Picosecond Self Q-Switched Mode-Locked Nd:GdVO4 Laser,” Laser Phys. Lett. 4, 413–417 (2007).

    Article  Google Scholar 

  10. Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, and Din Ping Tsai, “Highly Birefringent Index-Guiding Photonic Crystal Fiber with Squeezed Differently Sized Air-Holes in Cladding,” Jpn J. Appl. Phys. 47, 3755–3759 (2008).

    Article  ADS  Google Scholar 

  11. Minglie Hu, Ching-Yue Wang, Yanfeng Li, Zhuan Wang, Lu Chai, and A. M. Zheltikov, “Polarization- and Mode-Dependent Anti-Stokes Emission in a Birefringent Microstructure Fiber,” IEEE Photon. Technol. Lett. 17, 630–632 (2005).

    Article  ADS  Google Scholar 

  12. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, “Frequency-Tunable Anti-Stokes Line Emission by Eigenmodes of a Birefringent Microstructure Fiber,” Opt. Express 12, 1932–1937 (2004).

    Article  ADS  Google Scholar 

  13. B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-Power Wavelength-Tunable Photonic-Crystal-Fiber-Based Oscillator-Amplifier-Frequency-Shifter Femtosecond Laser System and its Applications for Material Microprocessing”, Laser Phys. Lett. 1–5 (2008).

  14. M. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, Y. N. Kondratev, C. Sibilia, and A. M. Zheltikov, “An Anti-Stokes-Shifted Doublet of Guided Modes in a Photonic-Crystal Fiber Selectively Generated and Controlled with Orthogonal Polarizations of the Pump Field,” Appl. Phys. B 79, 805–809 (2004).

    Article  ADS  Google Scholar 

  15. M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, “Soliton Squeezing in Microstructure Fiber,” Opt. Lett. 27, 649–651 (2002).

    Article  ADS  Google Scholar 

  16. M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude Squeezing in a Mach-Zehnder Interferometer: Numerical Analysis of Experiments with Microstructure Fiber,” Opt. Express 10, 128–138 (2002).

    ADS  Google Scholar 

  17. http://www.crystal-fibre.com/datasheets/NL-800%20List.pdf.

  18. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, Singapore, 2005), 3rd ed., p. 142.

    Google Scholar 

  19. K. M. Hilligsöe, T. Andersen, H. Paulsen, C. Nielsen, K. Mölmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum Generation in a Photonic Crystal Fiber with Two Zero Dispersion Wavelengths,” Opt. Express 12, 1045–1054 (2004).

    Article  ADS  Google Scholar 

  20. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of Cross-phase Modulation on Supercontinuum Generated in Microstructured Fibers with sub-30 fs Pulses,” Opt. Express 12, 4614–4624 (2004).

    Article  ADS  Google Scholar 

  21. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Photonic-Crystal-Fiber Solutions for Ultrafast Chromium Forsterite Laser Technologies”, Laser Phys. Lett. 4, 775–800 (2007).

    Article  Google Scholar 

  22. G. Millot, P. Tchofo Dinda, E. Seve, and S. Wabnitz, “Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers,” Opt. Fiber Technol. 7, 170–205 (2001).

    Article  ADS  Google Scholar 

  23. E. R. Martins, D. H. Spadoti, M. A. Romero, and B.-H. V. Borges, “Theoretical Analysis of Supercontinuum Generation in a Highly Birefringent D-Shaped Microstructured Optical Fiber,” Opt. Express 15, 14335–14347 (2007).

    Article  ADS  Google Scholar 

  24. Q. Lin and G. P. Agrawal, “Raman Response Function for Silica Fibers,” Opt. Lett. 31, 3086–3088 (2004).

    Article  ADS  Google Scholar 

  25. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive Wave Generation by Solitons in Microstructured Optical Fibers,” Opt. Express 12, 124–135 (2003).

    Article  ADS  Google Scholar 

  26. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue Light and Infrared Continuum Generation by Soliton Fission in a Microstructured Fiber,” Appl. Phys. B 77, 307–311 (2003).

    Article  ADS  Google Scholar 

  27. X. Fang. N. Karasawa, R. Morita, R. S. Windeler, and M. Yamashita, “Nonlinear Propagation of A-few-optical Cycle Pulses in a Photonic Crystal Fiber-Experimental and Theoretical Studies beyond the Slowly Varying-Envelope Approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).

    Article  ADS  Google Scholar 

  28. E. Sorokin, V. L. Kalashnikov, S. Naumov, J. Teipel, F. Warken, H. Giessen, and I. T. Sorokina, “Intra- and Extra-Cavity Spectral Broadening and Continuum Generation at 1.5 μm Using Compact Low-Energy Femtosecond Cr:YAG Laser,” Appl. Phys. B 77, 197–204 (2003).

    Article  ADS  Google Scholar 

  29. N. Akhmediev and M. Karlsson, “Cherenkov Radiation Emitted by Solitons in Optical Fibers,” Phys. Rev. A 51, 2602–2607 (1995).

    Article  ADS  Google Scholar 

  30. D. R. Austin, C. Martijn de Sterke, and B. J. Eggleton, “Dispersive Wave Blue-Shift Supercontinuum Generation,” Opt. Express 14, 11997–12008 (2006).

    Article  ADS  Google Scholar 

  31. Zh. Zhu and T. G. Brown, “Polarization Properties of Supercontinuum Spectra Generated Birefringent Photonic Crystal Fibers,” J. Opt. Soc. Am. B 21, 249–257 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helin Wang.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Leng, Y., Xu, Z. et al. Polarization-dependent two-color dispersion wave generation and evolution in polarization-maintaining photonic crystal fiber. Laser Phys. 19, 993–1001 (2009). https://doi.org/10.1134/S1054660X09050181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09050181

PACS numbers

Navigation