Skip to main content
Log in

Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

The possibility of use of ordinary short-focus lenses with strong spherical aberration for mode selection in a laser resonator is demonstrated. Plano-convex spherical lenses with foci from 2.5 to 10.0 cm placed inside the resonator of the CW laser diode pumped Yb:YAG laser were used to select circular modes of Laguerre-Gauss and Bessel-Gauss type, or to get ring-like, multi-mode off-axis oscillations with variable inner and outer diameters of rings. At the constant pump power mode selection was obtained by shifting an intracavity lens along the resonator axis relative to the Yb:YAG ceramics active element of 1.1 mm thickness. Peaked and hollow multi-ring beams with output power up to 30 mW were produced. Near diffraction free (ndf) propagation of the central part (minimum or maximum) of these beams was observed along distances over 10 m from the resonator output coupler. The mechanisms of mode selection due to spherical aberration in the resonator and ndf propagation of output beams are considered. The possibility of producing radially polarized beams from the laser with an intracavity lens and possible applications of the devised laser scheme are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hodgson and H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).

    Article  ADS  Google Scholar 

  2. R. Martinez-Herrero, P.M. Meijias, N. Hodgson, and H. Weber, IEEE J. Quantum Electron. 31, 2173 (1995).

    Article  ADS  Google Scholar 

  3. Ch. Kennedy, Appl. Opt. 41, 6991 (2002).

    Article  ADS  Google Scholar 

  4. J. A. Ruff and A. E. Siegman, Opt. Quantum Electron. 26, 629 (1994).

    Article  Google Scholar 

  5. J.-F. Bisson, Yu. Senatsky, A. Shirakawa, and K. Ueda, in Technical Program of the Intern. Conf. Laser Optics-2008, Report TuR 1-11, p. 14.

  6. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).

    Article  ADS  Google Scholar 

  7. V. Garces-Chavez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).

    Article  ADS  Google Scholar 

  8. A. Hakola, S.C. Buchter, T. Kajava, H. Elfstrom. J. Simonen, P. Paakkonen, and J. Turunen, Optics Comm. 238, 325 (2004).

    ADS  Google Scholar 

  9. F. Wu, Y. Chen, and D. Guo, Appl. Opt. 46, 4943 (2007).

    Article  ADS  Google Scholar 

  10. Q. Liu, F. Lu, M. Gong, C. Li, and D. Ma, Laser Phys. Lett. 4, 30 (2007).

    Article  Google Scholar 

  11. J. Dong. A. Shirakawa, and K. Ueda, Laser Phys. Lett. 4, 109 (2007).

    Article  Google Scholar 

  12. Q. Liu, X. Fu. D. Ma, X. Yan, F. He, L. Huang, M. Gong, and D. Wang, Laser Phys. Lett. 4, 719 (2007).

    Article  Google Scholar 

  13. K. Sueda. S. Kawato, and T. Kobayashi, Laser Phys. Lett. 5, 271 (2008).

    Article  Google Scholar 

  14. J.-F. Bisson, K. Ueda, and Yu. Senatsky, Laser Phys. Lett. 2, 327 (2005).

    Article  Google Scholar 

  15. J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, Opt. Express 14, 3304 (2006).

    Article  ADS  Google Scholar 

  16. R. Herman and T. Wiggins, JOSA A 8, 932 (1991).

    Article  ADS  Google Scholar 

  17. J. Arlt, K. Dholakia, L. Allen, and M.J. Padgett, J. Mod. Opt. 45, 1231 (1998).

    Article  ADS  Google Scholar 

  18. J. Arlt, T. Hiitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).

    Article  ADS  Google Scholar 

  19. J. Arlt and K. Dholakia, Opt. Commun. 177, 297 (2000).

    Article  ADS  Google Scholar 

  20. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, JOSA A 18, 1986 (2001).

    Article  ADS  Google Scholar 

  21. Y. Ohtake. T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, and T. Hara, Opt. Lett. 32, 1411 (2007).

    Article  ADS  Google Scholar 

  22. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

    Google Scholar 

  23. H. P. Kortz, R. Ifflander, and H. Weber, Appl. Opt. 20, 4124 (1981).

    Article  ADS  Google Scholar 

  24. G. Herziger and H. Weber, Appl. Opt. 23, 1450 (1984).

    Article  ADS  Google Scholar 

  25. J. Rogel-Salazar, G. New, and S. Chavez-Cerda, Opt. Commun. 190, 117 (2001).

    Article  ADS  Google Scholar 

  26. Yu.Yu. Stoilov, Phys. Usp. 47, 1261 (2004).

    Article  ADS  Google Scholar 

  27. N. E. Bykovsky and Yu. V. Senatsky, Laser Phys. Lett. 5, 664 (2008).

    Article  Google Scholar 

  28. N. E. Bykovsky and Yu. V. Senatsky, Quantum Electron. 38, 813 (2008).

    Article  ADS  Google Scholar 

  29. R. Herman and T. Wiggins, Appl. Opt. 33, 7297 (1994).

    Article  ADS  Google Scholar 

  30. A. Burvall, K. Kolocz, Z. Jaroszevicz, and A. Friberg, Appl. Opt. 43, 4838 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Senatsky.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senatsky, Y., Bisson, J.F., Shelobolin, A. et al. Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration. Laser Phys. 19, 911–918 (2009). https://doi.org/10.1134/S1054660X09050028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09050028

PACS numbers

Navigation