Polarization-controlled dispersive wave redirection in dual-core photonic crystal fiber

Abstract

The complex study of the polarization-controlled supercontinuum generation in a dual-core square lattice photonic crystal fiber made of multicomponent glass was accomplished. The fiber was excited by 100-fs pulses at a 1250-nm wavelength in the anomalous dispersion region and the registered spectra exhibited soliton fission and Raman-induced self-frequency shift processes. The study also involved a detailed analysis of the infrared-to-visible light conversion exhibiting a dispersive wave origin. The special dual-core properties were investigated by separate spectral analysis of each of the two cores and the near-field profile registration. The emphasis was on the visible part of the spectrum where the input energy and polarization direction dependences were studied. The increase in the input energy allowed for the tuning of the wavelength of the visible spectral features, a further rotation of the polarization direction had an effect on the spectral dependence of the light distribution between the cores. The dual-core fiber exhibited a significant coupling performance and the spectral dependence of the visible light distribution is in good agreement with the simulated coupling length spectral characteristics. Single-core excitation in the linear regime revealed the possibility of coupling 50% of the energy to the other core and the same polarization-controlled redirection possibilities as that at the nonlinear experiments. Dual-core excitation of the fiber enhances the light redirection effect with the application potential for the polarization-controlled directional coupler accompanied by nonlinear frequency conversion.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  ADS  Google Scholar 

  2. 2.

    P. St. J. Russell, Science 299, 358 (2003).

    Article  ADS  Google Scholar 

  3. 3.

    P. M. Blanchard, J. G. Burnett, G. R. G. Erry, et al., Smart Mater. Struct. 9, 132 (2000).

    Article  ADS  Google Scholar 

  4. 4.

    W. N. MacPherson, M. J. Gander, R. McBride, et al., Opt. Commun. 193, 97 (2001).

    Article  ADS  Google Scholar 

  5. 5.

    L. Zhang and C. Yang, Opt. Express 11, 1015 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    R. Buczynski, Acta Phys. Pol. A 106, 141 (2004).

    ADS  Google Scholar 

  7. 7.

    J. Laegsgaard, Opt. Lett. 30, 3281 (2005).

    Article  ADS  Google Scholar 

  8. 8.

    J. Laegsgaard, O. Bang, and A. Bjarklev, Opt. Lett. 29, 2473 (2004).

    Article  ADS  Google Scholar 

  9. 9.

    A. Betlej, S. Suntsov, K. G. Makris, et al., Opt. Lett. 31, 1480 (2006).

    Article  ADS  Google Scholar 

  10. 10.

    I. Bugar, I. V. Fedotov, A. B. Fedotov, et al., “Nonlinear Frequency Conversion in Double Core Photonic Crystal Fibers,” Proc. SPIE, 658241 (2007).

  11. 11.

    A. B. Fedotov, P. Zhou, A. P. Tarasevitch, et al., J. Raman Spectrosc. 33, 888 (2002).

    Article  ADS  Google Scholar 

  12. 12.

    A. B. Fedotov, A. N. Naumov, I. Bugar, et al., IEEE J. Sel. Top. Quantum Electron. 8, 665 (2002).

    Article  Google Scholar 

  13. 13.

    R. Buczynski, D. Lorenc, I. Bugar, et al., “Nonlinear Microstructured Fibers for Supercontinuum Generation,” Proc. SPIE, 660805 (2007).

  14. 14.

    “Self Made Z-Scan Study,” paper submitted.

  15. 15.

    E. Silvestre, M. V. Andrés, and P. Andrés, J. Lightwave Technol. 16, 923 (1998).

    Article  ADS  Google Scholar 

  16. 16.

    A. Ferrando, E. Silvestre, J. J. Miret, et al., Opt. Lett. 24, 276 (1999).

    Article  ADS  Google Scholar 

  17. 17.

    A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).

    Google Scholar 

  18. 18.

    D. Lorenc, I. Bugar, M. Aranyosiova, et al., Laser Phys. 18, 270 (2008).

    ADS  Google Scholar 

  19. 19.

    J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Phys. Rev. Lett. 88, 173901 (2002).

    Google Scholar 

  20. 20.

    D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).

    Article  ADS  Google Scholar 

  21. 21.

    I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express 12, 124 (2004)

    Article  ADS  Google Scholar 

  22. 22.

    W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Bugar.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bugar, I., Fedotov, I.V., Fedotov, A.B. et al. Polarization-controlled dispersive wave redirection in dual-core photonic crystal fiber. Laser Phys. 18, 1420–1428 (2008). https://doi.org/10.1134/S1054660X08120086

Download citation

PACS numbers

  • 42.81.Dp
  • 42.81.Gs
  • 42.65.Jx