Skip to main content
Log in

Mathematical simulation of the femtosecond-laser inscription of optical waveguides

  • The Proceedings of the Second Russian Fiber Lasers Seminar, Saratov, Russia, April 1–4, 2008
  • Published:
Laser Physics

Abstract

Based on the hierarchy of mathematical models with regard to parallel algorithms and effective systems, the interaction of a femtosecond-laser pulse with a transparent dielectric medium (fiber-optic glass) is numerically simulated. The features of this interaction are studied for the initial Gaussian and ring distributions of the laser beam. The critical powers at which a local collapse of the beam takes place are determined for the Schrödinger equation. A comparison of the results obtained using various models is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Turitsyn, V. K. Mezentsev, M. Dubov, et al., “Sub-Critical Regime of Femtosecond Inscription,” Opt. Express 15, 14750–14764 (2007).

    Article  ADS  Google Scholar 

  2. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1974).

    MATH  Google Scholar 

  3. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995; Mir, Moscow, 1996).

    Google Scholar 

  4. I. V. Kolokolov, E. A. Kuznetsov, A. I. Mil’shtejn, et al., Tasks in Mathematical Methods of Physics, 2nd ed. (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  5. V. Talanov, “Focusing of Light in Cubic Media,” JETP Lett. 11, 199–201 (1970).

    ADS  Google Scholar 

  6. P. Johannisson, D. Anderson, M. Lisak, M. Marklund, Nonlinear Bessel Beams, Opt. Commun 222, 107–115 (2003).

    Article  ADS  Google Scholar 

  7. G. Fibich and A. L. Gaeta, “Critical Power for Self-Focusing in Bulk Media and in Hollow Waveguides,” Opt. Lett. 25, 335–337 (2000).

    Article  ADS  Google Scholar 

  8. R. Chiao, E. Garmire, and C. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13, 479–482 (1964).

    Article  ADS  Google Scholar 

  9. M. Weinstein, “Nonlinear Schrodinger Equations and Sharp Interpolationestimates,” Commun. Math. Phys. 87, 567 (1983).

    Article  MATH  ADS  Google Scholar 

  10. V. I. Paasonen, “High-Order Boundary Conditions in Poles of Coordinate Systems,” Comput. Technol. 5, 93–105 (2000).

    MATH  MathSciNet  Google Scholar 

  11. N. N. Yananeko, A. N. Konovalov, A. N. Bugrov, and G. V. Shustov, “About Organization of Parallel Calculations and Parallelizing of Gauss Algorithm,” Numer. Methods Continuum Mech. 9(7), 139–146 (1978).

    Google Scholar 

  12. V. I. Paasonen, “The Parallel Algorithm for the Compact Schemes in Inhomogeneous Areas,” Comput. Technol. 8 (3), 98–106 (2003).

    MATH  Google Scholar 

  13. V. I. Paasonen, “The Studies of the Parallel Algorithm for the Compact Shemes in Inhomogeneous Areas,” Comput. Technol. 10, 81–89 (2005).

    MATH  Google Scholar 

  14. A. F. Voevodin and S. M. Shurgin, The Numerical Methods of Calculating of One-Dimensional Systems (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  15. T. A. Kudryashova and S. V. Polyakov, “About Some Methods of High Performance Solution of Boundary Value Problem,” in IV International Conference on Mathematical Simulations, 2, STANKIN, 2001.

  16. Q. Feng, J. V. Moloney, A. C. Newell, et al., “Theory and Simulation on the Threshold of Water Breakdown Induced by Focused Ultrashort Laser Pulses,” IEEE J. Quantum Eelectron. 33, 127–137 (1997).

    Article  ADS  Google Scholar 

  17. G. D. Akrives, V. A. Dougalis, O. A. Karakashian, and W. R. Mckinney, “Numerical Appriximation of Blow-Up of Radially Summetric Solutions of the Nonlinear Schrodinger Equation,” SIAM J. Sci. 25(1), 186–212 (2003).

    Article  MathSciNet  Google Scholar 

  18. “GADI Fibich Adiabatic Law for Self-Focusing of Optical Beams,” Opt. Lett. 21, 1735–1737 (1996).

    Google Scholar 

  19. B. J. LeMesurier, P. L. Christiansen, Yu. B. Gaididei, and J. J. Rasmussen, “Beam Stabilization in the 2D Nonlinear Schrodinger Equation with Attractive Potential by Beam Splitting and Radiation,” Phys. Rev. E 70, 046614 (2004).

    Google Scholar 

  20. A. Couairon, L. Sudrie, M. Franco, et al., “Filamentation and Damage in Fused Silica Indiced by Tightly Focused Femtosecond Laser Pulses,” Phys. Rev. B 71, 125435 (2005).

    Google Scholar 

  21. S. Tzortzakis, L. Sudrie, M. Franko, et al., “Self-Guided Propagation of Ultrashort IR Laser Pulses in Fused Silica,” Phys. Rev. Lett. 87, 213902 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Vitkovskiy.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitkovskiy, V.E., Fedoruk, M.P. Mathematical simulation of the femtosecond-laser inscription of optical waveguides. Laser Phys. 18, 1268–1278 (2008). https://doi.org/10.1134/S1054660X0811011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0811011X

PACS numbers

Navigation