Skip to main content
Log in

L-band tunable multiwavelength fiber laser using an unpumped polarization maintaining an erbium-ytterbium double-clad fiber-loop mirror

  • Fiber Optics
  • Published:
Laser Physics

Abstract

An L-band tunable multiwavelength source is newly proposed and demonstrated employing an unpumped polarization maintaining an erbium-ytterbium codoped double-clad fiber (PM-EYDF) loop mirror in a semiconductor optical amplifier-based fiber-ring laser. This is achieved by only adjusting the polarization controller in the loop mirror for the birefringence of the PM-EYDF, which is polarization dependent, and which originates from the fact that the traversing signal with a different polarization state absorbed by the PM-EYDF changes its effective birefringence. A similar behavior also happens when the traversing signal power is varied. The multiwavelength operation with the tunable range as large as the comb spacing of the transmission spectrum of the PM-EYDF loop mirror is successfully accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively Mode-Locked Fiber Laser Based on Symmetrical Nonlinear Optical Loop Mirror,” Laser Phys. Lett. 5, 364 (2008).

    Article  Google Scholar 

  2. Z. X. Zhang, K. Xu, J. Wu, et al., “Multiwavelength Figure-of-Eight Fiber Laser With a Nonlinear Optical Loop Mirror,” Laser Phys. Lett. 5, 213 (2008).

    Article  Google Scholar 

  3. G. A. Pavlath and H. J. Shaw, “Birefringence and Polarization Effects in Fiber Gyroscopes,” Appl. Opt. 21, 1752 (1982).

    Article  ADS  Google Scholar 

  4. D.-M. Liang, X.-F. Xu, Y. Li, et al., “Multiwavelength Fiber Laser Based on a High Birefringence Fiber Loop Mirror,” Laser Phys. Lett. 4, 57 (2007).

    Article  ADS  Google Scholar 

  5. S. W. Harun, F. A. Rahman, K. Dimyati and H. Ahmad, “An Efficient Multiwavelength Light Source Based on ASE Slicing,” Laser Phys. Lett. 3, 495 (2006).

    Article  Google Scholar 

  6. D. S. Moon, B. H. Kim, A. Lin, et al., “Tunable Multi-Wavelength SOA Fiber Laser Based on a Sagnac Loop Mirror Using an Elliptical Core Side-Hole Fiber,” Opt. Express 15, 8371 (2007).

    Article  ADS  Google Scholar 

  7. L. R. Chen, “Tunable Multiwavelength Fiber Ring Lasers Using a Programmable High-Birefringence Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16, 410 (2004).

    Article  ADS  Google Scholar 

  8. M. P. Fok, K. Lee, and C. Shu, “Waveband-Switchable SOA Ring Laser Constructed with a Phase Modulator Loop Mirror Filter,” IEEE Photonics Technol. Lett. 17, 1393 (2005).

    Article  ADS  Google Scholar 

  9. K. L. Lee, M. P. Fok, S. M. Wan, and C. Shu, “Optically Controlled Sagnac Loop Comb Filter,” Opt. Express 12, 6335 (2004).

    Article  ADS  Google Scholar 

  10. G. Das and J. W. Y. Lit, “L-Band Multiwavelength Fiber Laser Using an Elliptical Fiber,” IEEE Photonics Technol. Lett. 14, 606 (2002).

    Article  ADS  Google Scholar 

  11. D. Liu, N. Q. Ngo, X. Y. Dong, et al., “A Tunable Multiwavelength Fiber Laser Source with an Elliptical Core Fiber Sagnac Loop Filter,” SPIE Passive Components and Fiber-Based Devices, 910 (2005).

  12. X. Fan, Z. He, and K. Hotate, “Novel Strain-and Temperature-Sensing Mechanism Based on Dynamic Grating in Polarization-Maintaining Erbium-Doped Fiber,” Opt. Express 14, 556 (2006).

    Article  ADS  Google Scholar 

  13. J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller Matrix Formalism for Modeling Polarization Effects in Erbium-Doped Fiber,” J. Light-wave Technol. 16, 200 (1998).

    Article  ADS  Google Scholar 

  14. G.-S. Kim, Y.-G. Han, R. M. Sova, et al., “Optical Fiber Modal Birefringence Measurement Based on Lyot-Sagnac Interferometer,” IEEE Photonics Technol. Lett. 15, 269 (2003).

    Article  ADS  Google Scholar 

  15. Y. Liu, B. Liu, X. Feng, et al., “High-Birefringence Fiber Loop Mirrors and Their Applications as Sensors,” Appl. Opt. 44, 2382 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  16. Z.-Y. Liu, Y.-G. Liu, J.-B. Du, et al., “Channel-Spacing and Wavelength Switchable Multiwavelength Erbium-Doped Fiber Laser Using Sampled Hi-Bi Fiber Grating and Photonic Crystal Fiber Loop Mirror,” Laser Phys. Lett. 5, 122 (2008).

    Article  MathSciNet  Google Scholar 

  17. X. M. Liu, X. Q. Zhou, X. F. Tang, et al., “Switchable and Tunable Multiwavelength Erbium-Doped Fiber Laser with Fiber Bragg Gratings and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 17, 1626 (2005); X. Liu, X. Yang, F. Lu, et al., “Stable and Uniform Dual-Wavelength Erbium-Doped Fiber Laser Based on Fiber Bragg Gratings and Photonic Crystal Fiber,” Opt. Express 13, 142 (2005).

    Article  ADS  Google Scholar 

  18. F. Heismann and M. S. Whalen, “Broadband Reset-Free Automatic Polarization Controller,” Electron. Lett. 27, 377 (1991).

    Article  Google Scholar 

  19. J. Hashimoto, K. Koyama, T. Katsuyama, et al., “1.3 μm Traveling-Wave GaInNAs Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 43, 3419 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chung.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Chung, Y. & Moon, D.S. L-band tunable multiwavelength fiber laser using an unpumped polarization maintaining an erbium-ytterbium double-clad fiber-loop mirror. Laser Phys. 18, 1196–1199 (2008). https://doi.org/10.1134/S1054660X08100150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08100150

PACS numbers

Navigation