Skip to main content

Higher-order mode investigations by intermodal interference in a dual-core photonic crystal fiber


This article presents an investigation of the linear optical properties of a dual-core photonic crystal fiber with a square lattice made of a multicomponent glass in a second communication window. An experimental method based on intermodal interference was used to determine the effective refractive indices of higher-order modes, with knowledge of the fundamental mode dispersion. The effective refractive indices were also determined by an FDTD-based simulation and the obtained values provided a good agreement in comparison to the experimental results. The obtained results help to clarify the nonlinear spectral transformation processes observed in the same fiber at propagation in the higher-order modes.

This is a preview of subscription content, access via your institution.


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    ADS  Article  Google Scholar 

  2. W. MacPherson, M. J. Gander, R. McBride, et al., Opt. Commun. 193, 97 (2001).

    Article  ADS  Google Scholar 

  3. L. Zhang and C. Yang, Opt. Express 11, 1015, (2003)

    ADS  Article  Google Scholar 

  4. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgo, Opt. Express 12, 124, (2003).

    Article  ADS  Google Scholar 

  5. A. Podlipensky, P. Szarniak, N. Y. Joly, et al., Opt. Express 15, 1653 (2007).

    Article  ADS  Google Scholar 

  6. A. B. Fedotov, A. N. Naumov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2156 (2002).

    Article  ADS  Google Scholar 

  7. G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, Electron. Lett. 41, 203 (2005).

    Article  Google Scholar 

  8. J. Laegsgaard, O. Bang, and A. Bjarklev, Opt. Lett. 29, 2473 (2004).

    Article  ADS  Google Scholar 

  9. A. Betlej, S. Suntsov, K. G. Makris, et al., Opt. Lett. 31, 1480 (2006).

    Article  ADS  Google Scholar 

  10. I. Bugar, I. V. Fedotov, A. B. Fedotov, et al., Proc. SPIE 6990-26 (2007) (in press).

  11. B. J. Mangan, J. C. Knight, T. A. Birks, et al., Electron. Lett. 36, 1358, (2000).

    Article  Google Scholar 

  12. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., Opt. Lett. 25, 1325 (2000).

    Article  ADS  Google Scholar 

  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals (Princeton University Press, Princeton and Oxford, 2008), p. 13.

    MATH  Google Scholar 

  14. P. Hlubina, Optics Communications 116, 469 (2005).

    Google Scholar 

  15. D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, Opt. Express 12, 3465 (2004).

    Article  ADS  Google Scholar 

  16. R. Buczynski, “Photonic Crystal Fibers,” Acta Physica Polonica A 106, 141 (2004).

    ADS  Google Scholar 

  17. D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Velic, D. Chorvat, Laser Phys. 18 (2008, in press).

  18. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, Opt. Lett. 24, 276 (1999).

    Article  ADS  Google Scholar 

  19. A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, Laser Phys. Lett. 4, 774 (1999).

    Google Scholar 

  20. A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov, et al., Laser Phys. Lett. 3, 301 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Koys.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koys, M., Bugar, I., Lorenc, D. et al. Higher-order mode investigations by intermodal interference in a dual-core photonic crystal fiber. Laser Phys. 18, 1153–1158 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

PACS numbers

  • 42.81.Cn
  • 42.81.Gs
  • 42.81.Qb