Skip to main content
Log in

Temperature and water concentration measurements in combustion gases using a DFB diode laser at 1.4 μm

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

A sensor using a single DFB diode laser at 1.4 μm based on wavelength modulation spectroscopy for the measurements of the gas temperature and the H2O concentration in combustion gases is developed. A line pair of H2O absorption transitions located at 7085.251 and 7085.876 cm−1 is selected based on some design rules. The 1f normalized 2f method is used to remove the need for the calibration and to correct for the transmission variation due to beam steering, mechanical misalignments, soot, and window fouling. The precision for the temperature and H2O concentration measurements are 1.05 and 2.10% in a controlled static cell, respectively. Burner experiments demonstrate the ability of the system for in situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Sonnenfroh and M. G. Allen, “Observation of CO and CO2 Absorption near 1.57 μm with an External-Cavity Diode Laser,” Appl. Opt. 36, 3298–3300 (1997).

    Article  ADS  Google Scholar 

  2. L. Joly, B. Parvitte, V. Zeninari, and G. Durry, “Development of a Nompact CO2 Sensor Open to the Atmosphere and Based on Near-Infrared Laser Technology at 2.68 μm. Appl. Phys. B 86, 743–748 (2007).

    Article  ADS  Google Scholar 

  3. J. B. Jeffries, C. Schulz, D. W. Mattison, et al., “UV Absorption of CO2 for Temperature Diagnostics of Hydrocarbon Combustion Applications,” Proc. Comb. Inst. 30, 1591–1599 (2005).

    Article  Google Scholar 

  4. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “Diode Laser Sensor for Measurements of CO, CO2, and CH4 in Combustion Flows,” Appl. Opt. 36, 8745–8752 (1997).

    Article  ADS  Google Scholar 

  5. J. A. Silver and D. J. Kane, “Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion,” Meas. Sci. Technol. 10, 845–852 (1999).

    Article  ADS  Google Scholar 

  6. K. Chan, H. Ito, H. Inaba, and T. Furuya, “10 km-Long Fibre-Optic Remote Sensing of CH4 Gas by near Infrared Absorption,” Appl. Phys. B 38, 11–15 (1985).

    Article  ADS  Google Scholar 

  7. A. Rocco, G. De. Natale, P. De. Natale, et al., “A Diode-Laser-Based Spectrometer for In-Situ Measurements of Volcanic Gases,” Appl. Phys. 78, 235–240 (2004).

    Article  Google Scholar 

  8. J. Wang, M. Maiorov, J. B. Jeffries, et al., “A Potential Remote Sensor of CO in Vehicle Exhausts Using 2.3 μm Diode Lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).

    Article  ADS  Google Scholar 

  9. X. Liu, J. B. Jeffries, R. K. Hanson, et al., “Development of a Tunable Diode Laser Sensor for Measurements of Gas Turbine Exhaust Temperature,” Appl. Phys. 82, 469–478 (2006).

    Article  Google Scholar 

  10. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A Diode-Laser Absorption Sensor System for Combustion Emission Measurements,” Meas. Sci. Technol. 9, 327–338.

  11. K. Uehara, “Dependence of Harmonic Signals on Sample-Gas Parameters in Wavelength-Modulation Spectroscopy for Precise Absorption Measurements,” Appl. Phys. 67, 517–523 (1998).

    Article  Google Scholar 

  12. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a Fast Temperature Sensor for Combustion Gases Using a Single Tunable Diode Laser,” Appl. Phys. 81, 711–722 (2005).

    Article  Google Scholar 

  13. M. Gabrysch, C. Corsi, F. S. Pavone, and M. Inguscio, “Simultaneous Detection of CO and CO2 Using a Semiconductor DFB Diode Laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).

    Article  ADS  Google Scholar 

  14. H. Li, G. B. Rieker, X. Liu, et al., “Extension of Wavelength-Modulation Spectroscopy to Large Modulation Depth for Diode Laser Absorption Measurements in High-Pressure Gases,” Appl. Opt. 45, 1052–1061 (2006).

    Article  ADS  Google Scholar 

  15. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-Modulation-Depth 2f Spectroscopy with Diode Lasers for Rapid Temperature and Species Measurements in Gases with Blended and Broadened Spectra,” Appl. Opt. 13, 6500–6509 (2004).

    Article  ADS  Google Scholar 

  16. H. Li, A. Farooq, G. B. Rieker, et al., “Near-Infrared Diode Laser Absorption Sensor for Rapid Measurements of Temperature and Water Vapor in a Shock Tube,” Appl. Phys. 89, 407–416 (2007).

    Google Scholar 

  17. T. Fernholz, H. Teichert, and V. Ebert, “Digital, Phase-Sensitive Detection for In Situ Diode-Laser Spectroscopy under Rapidly Changing Transmission Conditions,” Appl. Phys. 75, 229–236 (2002).

    Article  Google Scholar 

  18. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength Modulation Absorption Spectroscopy with 2f Detection Using Multiplexed Diode Lasers for Rapid Temperature Measurements in Gaseous Flows,” Appl. Phys. B 78, 503–511 (2004).

    Article  ADS  Google Scholar 

  19. J. Reid and D. Labrie, “Second-Harmonic Detection with Tunable Diode Lasers-Comparison of Experiment and Theory,” Appl. Phys. B 26, 203–210 (1981).

    Article  ADS  Google Scholar 

  20. G. B. Rieker, H. Li, X. Liu, et al., “A Diode Laser Sensor for Rapid, Sensitive Measurements of Gas Temperature and Water Vapour Concentration at High Temperatures and Pressures,” Meas. Sci. Technol. 31, 1195–1204 (2007).

    Article  ADS  Google Scholar 

  21. P. Kluczynski and O. Axner, “Theoretical Aescription Based on Fourier Analysis of Wavelength-Modulation Spectrometry in Terms of Analytical and Background Signals,” Appl. Opt. 38, 5803–5815 (1999).

    Article  ADS  Google Scholar 

  22. T. Aizawa, “Diode-Laser Wavelength-Modulation Absorption Spectroscopy for Quantitative In Situ Measurements of Temperature and OH Radical Concentration in Combustion Gases,” Appl. Opt. 40, 4894–4903 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. G. Allen, “Diode Laser Absorption Sensors for Gas-Dynamic and Combustion Flows,” Meas. Sci. Technol. 9, 545–562 (1998).

    Article  ADS  Google Scholar 

  24. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a Sensor for Temperature and Water Concentration in Combustion Gases Using a Single Tunable Diode Laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).

    Article  ADS  Google Scholar 

  25. L. S. Rothman, D. Jacquemart, A. Barbe, et al., “The HITRAN Molecular Spectroscopic Database and HWAKS (HITRAN Atmospheric Workstation),” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005).

    Article  ADS  Google Scholar 

  26. E. E. Whiting, “New Empirical Approximation to the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transf. 16, 611–614 (1976).

    Article  Google Scholar 

  27. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McrGraw-Hill, New York, 1992).

    Google Scholar 

  28. X. Ouyang and P. L. Varghese, “Selection of Spectral Lines for Combustion Diagnostics,” Appl. Opt. 29, 4884–4890 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cai.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, T., Wang, G., Jia, H. et al. Temperature and water concentration measurements in combustion gases using a DFB diode laser at 1.4 μm. Laser Phys. 18, 1133–1142 (2008). https://doi.org/10.1134/S1054660X08100058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08100058

PACS numbers

Navigation