Skip to main content
Log in

Quasi-common-path microchip laser feedback interferometry with a high stability and accuracy

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

We report on an improved scheme of quasi-common-path microchip laser feedback interferometry, which demonstrates a high stability and accuracy. An additional beam splitter is used to divide the external cavity into a measuring feedback cavity and a reference feedback cavity. With this scheme, the optical path lengths of the measuring and reference feedback light can be made nearly the same, thus greatly reducing the long-period phase fluctuation caused by the laser frequency drift. The final system performances are evaluated as followed: the short-term displacement resolution is better than 2 nm, the output fluctuation is less than 10 nm within a 40-min-long stability test, and the maximum error within the 100-μm range is 25 nm when calibrated with the Agilent 5529A dual-frequency laser interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guofan Jin and Jinzhen Li, Laser Surveying (Science Publishing House, Beijing, 1998).

    Google Scholar 

  2. W. M. Wang, K. T. V. Gratten, A. W. Palmer, and W. J. O. Boyle, “Self-Mixing Interference Inside a Single-Mode Diode Laser for Optical Sensing Applications,” IEEE J. Lightwave Technol. 12, 1577–1587 (1995).

    Article  ADS  Google Scholar 

  3. T. Bosch and N. Servagent, “Optical Feedback Interferometry for Sensing Application,” Opt. Eng. 40, 20–27 (2001).

    Article  ADS  Google Scholar 

  4. A. Bearden, M. P. Neil, and L. C. Osborne, “Imaging and Vibrational Analysis with Laser-Feedback Interferometry,” Opt. Lett. 18, 238–240 (1993).

    Article  ADS  Google Scholar 

  5. Ben Ovryn and J. H. Andrews, “Phase-Shifted Laser Feedback Interferometry,” Opt. Lett. 23, 1078–1080 (1998).

    Article  ADS  Google Scholar 

  6. Dongmei Guo, Min Wan, and Suqing Tan, “Self-Mixing Interferometer Based on Sinusoidal Phase Modulating Tachnique,” Opt. Express 13, 1537–1543 (2005).

    Article  ADS  Google Scholar 

  7. E. Lacot, R. Day, and F. Stoeckel, “Laser Optical Feedback Tomography,” Opt. Lett. 24, 744–746 (1999).

    Article  ADS  Google Scholar 

  8. E. Lacot, R. Day, J. Pinel, and F. Stoeckel, “Laser Relaxation-Oscillation Frequency Imaging,” Opt. Lett. 26, 1483–1485 (2001).

    Article  ADS  Google Scholar 

  9. R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-Sensitivity Self-Mixing Laser Doppler Velocimetry with Laser-Diode-Pumped Microchip LiNdP04 Lasers,” IEEE Photonics Technol. Lett. 11, 706–708 (1999).

    Article  ADS  Google Scholar 

  10. K. Otsuka, K. Abe, J.-Y. Ko, and T-S Lim, “Real-Time Nanometer Vibration Measurement with a Self-Mixing Microchip Solid-State Laser,” Opt. Lett. 27, 1339–1341 (2002).

    Article  ADS  Google Scholar 

  11. E. Lacot and O. Hugon, “Phase-Sensitive Laser Detection by Frequency-Shifted Optical Feedback,” Phys. Rev. A 70, 053824-1–053824-8 (2004).

    Article  ADS  Google Scholar 

  12. C. Yin, L. Huang, M. Gong, et al., “A Novel Compact Side-Pumped Bonded Slab Microchip Laser,” Laser Phys. Lett. 4, 584–587 (2007).

    Article  Google Scholar 

  13. Y. Wang, L. Huang, M. Cong, et al., “1 MHz Repetition Rate Single-Frequency Gain-Switched Nd:YAG Microchip Laser,” Laser Phys. Lett. 4, 580–583 (2007).

    Article  Google Scholar 

  14. J. Scaronulc, H. Jelinkova, K. Nejezchleb, and V. Scaronkoda, “Nd:YAG/V:YAG Microchip Laser Operating at 1338 nm,” Laser Phys. Lett. 2, 519–524 (2005).

    Article  Google Scholar 

  15. H. Lei, M. Gong, Y. Ping, and L. Qiang, “Repetition Rate Continuously Controllable Passively Q-Switched Nd:YAG Bonded Microchip Laser,” Laser Phys. Lett. 4, 572–575(2007).

    Article  Google Scholar 

  16. Xinjun Wan, Duo Li, and Shulian Zhang, “Quasi-Common-Path Laser Feedback Interferometry Based on Frequency Shifting and Multiplexing”, Opt. Lett. 32, 367–369 (2007).

    Article  ADS  Google Scholar 

  17. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, MA, 1974).

    Google Scholar 

  18. J. J. Zayhowski, “Microchip Lasers,” Opt. Mater. 11, 255–267 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ren.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Z., Li, D., Wan, X. et al. Quasi-common-path microchip laser feedback interferometry with a high stability and accuracy. Laser Phys. 18, 939–946 (2008). https://doi.org/10.1134/S1054660X08080021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08080021

PACS numbers

Navigation