Skip to main content
Log in

Second-harmonic generation in a layer with variable susceptibility

  • Nonlinear and Quantum Optics
  • Published:
Laser Physics

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The weak nonlinearity limit of the second-harmonic generation in a medium with variable second-order susceptibility, changing along the direction of propagation of interacting waves according to the hyperbolic secant law, is considered. It is shown that the variation of the second harmonic’s normalized intensity with the spatial coordinate is given in terms of the solution to an auxiliary linear problem, which is known as the Rosen-Zener quantum two-level model. The final intensity of the second harmonic at the exit from the medium is calculated and analyzed. It is shown that, for the particular Rosen-Zener profile under consideration, because of its inherent properties, the variation range of the peak susceptibility of the layer for which the medium can be strictly considered as weakly nonlinear is narrower than the corresponding parameter range for a homogeneous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989); A. Yariv, Quantum Electronics (Wiley, New York, 1989; Sovetskoe Radio, Moscow, 1973); P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).

    Article  ADS  Google Scholar 

  3. A. Ishkhanyan, J. Javanainen, and H. Nakamura, J. Phys. A 38, 3505 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990); E. E. Nikitin and S. Ya. Umanski, Theory of Slow Atomic Collisions (Springer, Berlin, 1984).

    Google Scholar 

  5. N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).

    Article  MATH  ADS  Google Scholar 

  6. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979); A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953).

    Google Scholar 

  7. F. G. Tricomi, Integral Equations (Dover, New York, 1985; Inostrannaya Literatura, Moscow, 1960); T. A. Burton, Volterra Integral and Differential Equations (Academic, New York, 1983); R. K. Miller, Nonlinear Volterra Integral Equations (Benjamin, New York, 1971).

    Google Scholar 

  8. V. Ghazaryan, J. Contemp. Phys. (Armenian Ac. Sci.) 40(1), 1 (2005).

    Google Scholar 

  9. A. M. Ishkhanyan, J. Phys. A 33, 5539 (2000); A. M. Ishkhanyan, Opt. Commun. 176, 155 (2000); A. M. Ishkhanyan, J. Phys. A 30, 1203 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A. Ishkhanyan, M. Mackie, A. Carmichael, et al., Phys. Rev. A 69, 043612 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ishkhanyan.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishkhanyan, A., Manukyan, A. & Joulakian, B. Second-harmonic generation in a layer with variable susceptibility. Laser Phys. 18, 886–893 (2008). https://doi.org/10.1134/S1054660X0807013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0807013X

PACS numbers

Navigation