Skip to main content
Log in

Fundamental nonlinear-optical interactions in photonic fibers: Time-spectral visualization

  • Reviews
  • Published:
Laser Physics

Abstract

The nonlinear dynamics of optical signals propagating in fibers or waveguides can be quite complex. Many nonlinear regimes manifest themselves in spectral transformations observed at the output of the fiber. Such time-integrated measurements are severely limiting, however, and, thus, a number of time spectrally resolved techniques have been developed in the past. One of the simplest and most versatile appears to be the cross-correlation frequency-resolved optical gating (X-FROG), because it offers high sensitivity, broad bandwidth, and produces very intuitive two-dimensional spectrograms showing relative temporal positions of various frequency components comprising the output signal. Indeed, certain experiments described in this article can only be performed with X-FROG. For others, X-FROG offers better insight into the fundamental physics of nonlinear interactions; yet others yield beautiful and visually stunning images. Some of the fundamental non-linear-optical interactions in waveguides, such as soliton formation and propagation, soliton stabilization and the emission of Cherenkov continuum, resonant scattering of continuous waves on solitons, and the supercontinuum generation have been visualized with X-FROG and are summarized in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).

    Article  ADS  Google Scholar 

  2. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).

    Article  ADS  Google Scholar 

  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    ADS  Google Scholar 

  4. J. C. Knight, Nature 424, 847 (2003).

    Article  ADS  Google Scholar 

  5. K. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, Electron. Lett. 30, 1960 (1994).

    Article  Google Scholar 

  6. C. Lin, V. T. Nguyen, and W. G. French, Electron. Lett. 14, 822 (1978).

    Article  ADS  Google Scholar 

  7. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  8. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science 288, 635 (2000).

    Article  ADS  Google Scholar 

  9. P. B. Corkum and F. Krausz, Attosecond Science, Nature Phys. 3, 381 (2007).

    Article  Google Scholar 

  10. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).

    Article  ADS  Google Scholar 

  11. P. A. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A 41, 426 (1990).

    Article  ADS  Google Scholar 

  12. V. I. Karpman, Phys. Rev. E 47, 2073 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Akhmediev, and M. Karlsson, Phys. Rev. A 51, 2602 (1995).

    Article  ADS  Google Scholar 

  14. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, Boston, 2000).

    Google Scholar 

  15. J. M. Dudley, X. Gu, M. Xu, et al., Opt. Express 10, 1215 (2002).

    ADS  Google Scholar 

  16. T. Hori, N. Nishizawa, and T. Goto, J. Opt. Soc. Am. B 21, 1969 (2004).

    ADS  Google Scholar 

  17. K. Taira and K. Kikuchi, IEEE Photonics Technol. Lett. 13, 505 (2001).

    Article  ADS  Google Scholar 

  18. S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).

    Article  ADS  Google Scholar 

  19. http://www.femtosoft.biz.

  20. E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).

    Article  ADS  Google Scholar 

  21. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, et al., Opt. Express 12, 1045 (2004).

    Article  ADS  Google Scholar 

  22. D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 72, 016619 (2005).

    Google Scholar 

  23. A. Efimov, and A. J. Taylor, Appl. Opt. 44, 4408 (2005).

    Article  ADS  Google Scholar 

  24. A. Efimov, and A. J. Taylor, Appl. Phys. B 80, 721 (2005).

    Article  ADS  Google Scholar 

  25. A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 12, 6498 (2004).

    Article  ADS  Google Scholar 

  26. A. Efimov, A. V. Yulin, D. V. Skryabin, et al., Phys. Rev. Lett. 95, 213902/1-4 (2005).

  27. A. Efimov, A. J. Taylor, A. V. Yulin, et al., Opt. Lett. 31, 1624 (2006).

    Article  ADS  Google Scholar 

  28. N. Nishizawa, and T. Goto, Opt. Express 8, 328 (2001).

    Article  ADS  Google Scholar 

  29. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, J. Opt. Soc. Am. B 20, 2410 (2003).

    Article  ADS  Google Scholar 

  30. A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).

    Article  ADS  Google Scholar 

  31. F. G. Omenetto, B. P. Luce, D. Yarotski, and A. J. Taylor, Opt. Lett. 24, 1392 (1999).

    Article  ADS  Google Scholar 

  32. A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 11, 2567 (2003).

    Article  ADS  Google Scholar 

  33. A. Efimov, and A. J. Taylor, Appl. Phys. B 80, 721 (2005).

    Article  ADS  Google Scholar 

  34. A. Yulin, D. V. Skryabin, and P. St. J. Russell, Opt. Lett. 29, 2411 (2004).

    Article  ADS  Google Scholar 

  35. F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).

    Google Scholar 

  36. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).

    Article  ADS  Google Scholar 

  37. J. M. Harbold, F. O. Ilday, F. Wise, et al., Opt. Lett. 27, 1558 (2002).

    Article  ADS  Google Scholar 

  38. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, Opt. Express 12, 3471 (2004).

    Article  ADS  Google Scholar 

  39. N. Y. Joly, J. C. Knight, P. St. J. Russell, et al., presented at CLEO2004, San Francisco, CA, USA, 2004, Paper CWK4.

  40. F. Lu, Y. Deng, and W. H. Knox, Opt. Lett. 30, 1506 (2005).

    Article  Google Scholar 

  41. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001).

    Google Scholar 

  42. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, et al., Opt. Express 9, 319 (2001).

    Article  ADS  Google Scholar 

  43. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al., Opt. Express 10, 1520 (2002).

    ADS  Google Scholar 

  44. H. C. Y. Yu, A. Argyros, G. Barton, et al., Opt. Express 15, 9989 (2007).

    Article  ADS  Google Scholar 

  45. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, et al., Opt. Photonics News 17, 35 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Efimov.

Additional information

Original Text © Astro, Ltd., 2008.

Anatoly Efimov received his B.S. from the Nizhny Novgorod State University, Nizhny Novgorod, Russia, in 1993 and Ph.D. in 2001 from the University of Florida, Gainesville, USA, for work on the adaptive control of lasers and their interaction with matter using femto-second-pulse shaping. Since 2001, he has been working at the Los Alamos National Laboratory, first as a director’s funded postdoctoral fellow and, then, as a member of the technical staff. Currently, he serves as a scientist within the Nanophotonics and Optical Metamaterials thrust at the Center for Integrated Nanotechnologies (CINT) working in the areas of nanophotonics and nanoplasmonics, ultrashort-pulse generation, shaping and measurements, ultrafast spectroscopy, coherent control, and waveguide nonlinear optics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimov, A. Fundamental nonlinear-optical interactions in photonic fibers: Time-spectral visualization. Laser Phys. 18, 667–681 (2008). https://doi.org/10.1134/S1054660X08060017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X08060017

PACS numbers

Navigation