Linear and nonlinear properties of multicomponent glass photonic crystal fibers

Abstract

Processes resulting in supercontinuum generation in multicomponent glass photonic crystal fibers are reviewed in this paper. Multicomponent glass photonic crystal fibers are shown to have a broad transmission range, extending up to 4.5 μm in selected cases. Pumping with a 1240-nm femtosecond pulse at very low sub-nJ energies resulted in soliton formation and dispersive wave generation in a multicomponent PCF sample having a double-core square-lattice structure. These processes were described using a phase-matching model derived from the simulated dispersive properties of the fiber. Third-harmonic generation was observed in the radiation modes of a different cobweb sample with the simultaneous formation of a soliton in the NIR.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  ADS  Google Scholar 

  2. 2.

    T. Monro, Y. West, D. Hevak, et al., Electron. Lett. 36, 1998 (2000).

    Article  Google Scholar 

  3. 3.

    G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001; Mir, Moscow, 1996).

    Google Scholar 

  4. 4.

    S. Coen, A. H. L. Chau, R. Leonhardt, et al., J. Opt. Soc. Am. B 19, 753 (2002).

    Article  ADS  Google Scholar 

  5. 5.

    F. G. Omenetto, A. J. Taylor, M. D. Moores, et al., Opt. Lett. 26, 1158 (2001).

    Article  ADS  Google Scholar 

  6. 6.

    L. Tartara, I. Christiani, V. Degiorgo, et al., Opt. Commun. 215, 191 (2003).

    Article  ADS  Google Scholar 

  7. 7.

    J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Phys. Rev. Lett. 88, 173901 (2002).

    Google Scholar 

  8. 8.

    D. T. Reid, I. G. Cormack, W. J. Wadsworth, et al., J. Mod. Opt. 49, 757 (2002).

    Article  ADS  Google Scholar 

  9. 9.

    J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible Continuum Generation in Air-Silica Microstructure Optical Fiber with Anomalous Dispersion at 800 nm,” Opt. Lett. 25, 25 (2000).

    Article  ADS  Google Scholar 

  10. 10.

    M. J. Weber, Handbook of Optical Materials (CRC, Boca Raton, FL, 2003).

    Google Scholar 

  11. 11.

    R. Buczynski, D. Lorenc, I. Bugar, et al., Proc. SPIE 6608, 660 805 (2007).

  12. 12.

    A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203 901 (2001).

    Google Scholar 

  13. 13.

    N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).

    Article  ADS  Google Scholar 

  14. 14.

    E. Silvestre, M. V. Andres, and P. Andres, J. Lightwave Technol. 16, 923 (1998).

    Article  ADS  Google Scholar 

  15. 15.

    I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgo, Opt. Express 12, 124 (2003).

    Article  ADS  Google Scholar 

  16. 16.

    S. O. Konorov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Appl. Phys. B 81, 219 (2005).

    Article  ADS  Google Scholar 

  17. 17.

    D. Ouzounov, D. Homoelle, W. Zipfel, et al., Opt. Commun. 192, 219 (2001).

    Article  ADS  Google Scholar 

  18. 18.

    F. G. Omenetto, A. Efimov, J. Taylor, et al., Opt. Express 11, 61 (2003).

    Article  ADS  Google Scholar 

  19. 19.

    A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 11, 910 (2003).

    Article  ADS  Google Scholar 

  20. 20.

    A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 11, 2567 (2003).

    Article  ADS  Google Scholar 

  21. 21.

    A. N. Naumov, A. B. Fedotov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2183 (2002).

    Article  ADS  Google Scholar 

  22. 22.

    A. A. Ivanov, D. Lorenc, I. Bugar, et al., Phys. Rev. E 73, 016610 (2006).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Lorenc.

Additional information

Original Text © Astro, Ltd., 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorenc, D., Bugar, I., Aranyosiova, M. et al. Linear and nonlinear properties of multicomponent glass photonic crystal fibers. Laser Phys. 18, 270–276 (2008). https://doi.org/10.1134/S1054660X08030134

Download citation

PACS numbers

  • 42.65.Ky
  • 42.65.Wi
  • 42.81.Qb