Skip to main content

Femtosecond Er3+ fiber laser for application in an optical clock


The main elements needed for the realization of a compact femtosecond methane optical clock are developed and studied. A femtosecond laser system on an Er3+ fiber (λ = 1.55 μm) contains an oscillator, an amplifier, and a fiber with a relatively high nonlinearity in which the supercontinuum radiation is generated in the range 1–2 μm. In the supercontinuum spectrum, the fragments separated by an interval that is close to the methane-optical reference frequency (λ = 3.39 μm) exhibit an increase in intensity. The supercontinuum radiation is converted into the difference frequency in a nonlinear crystal to the range of the methane-reference frequency (λ = 3.3–3.5 μm), so that the frequency components of the transformed spectrum have sufficient intensities for the subsequent frequency-phase stabilization with respect to the methane reference. A system that stabilizes the pulse repetition rate of the femtosecond Er3+ laser is also employed. Thus, the repetition rate of the ultrashort pulses of the femtosecond fiber laser is locked to the methane reference. The pulse repetition rate is compared with the standard second. Thus, the scheme of an optical clock is realized.

This is a preview of subscription content, access via your institution.


  1. J. L. Hall, Nobel Lecture (2005).

  2. T. W. Hänsch, Nobel Lecture (2005).

  3. S. A. Diddams, T. Udem, J. C. Bergquist, et al., Science 293, 825 (2001).

    Article  ADS  Google Scholar 

  4. J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270 801 (2001).

  5. D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science 288, 635 (2000).

    Article  ADS  Google Scholar 

  6. S. A. Diddams, J. D. J. Jones, L.-S. Ma, et al., Opt. Lett. 25, 186 (2000).

    Article  ADS  Google Scholar 

  7. J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1041 (2003).

    Article  Google Scholar 

  8. M. Zimmermann, C. Gohle, R. Holzwarth, et al., Opt. Lett. 29, 310 (2004).

    Article  Google Scholar 

  9. M. A. Gubin, D. A. Tyurikov, A. S. Shelkovnikov, IEEE J. Sel. Top. Quantum Electron. 31, 2177 (1995).

    Article  Google Scholar 

  10. S. Foreman, A. Marian, J. Ye, et al., Opt. Lett. 30, 570 (2005).

    Article  ADS  Google Scholar 

  11. B. R. Washburn et al., Opt. Lett. 29, 250 (2004).

    Article  ADS  Google Scholar 

  12. F. Adler, K. Moutzouris, A. Leitenstorfer, et al., Opt. Express 12, 5872 (2004).

    Article  ADS  Google Scholar 

  13. P. Kubina, P. Adel, F. Adler, et al., Opt. Express 13, 904 (2005).

    Article  ADS  Google Scholar 

  14. Y. Deng, F. Lu, and W. Know, Opt. Express 13, 4589 (2005).

    Article  ADS  Google Scholar 

  15. A. V. Tausenev and P. G. Kryukov, Quantum Electron. 34, 106 (2004).

    Article  Google Scholar 

  16. A. V. Tausenev, P. G. Kryukov, M. M. Bubnov, et al., Quantum Electron. 35, 581 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Tausenev.

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gubin, M.A., Kireev, A.N., Tausenev, A.V. et al. Femtosecond Er3+ fiber laser for application in an optical clock. Laser Phys. 17, 1286–1291 (2007).

Download citation

  • Received:

  • Issue Date:

  • DOI:

PACS numbers

  • 06.30.Ft
  • 42.55.Wd
  • 42.65.Ky