Advertisement

Laser Physics

, Volume 17, Issue 11, pp 1286–1291 | Cite as

Femtosecond Er3+ fiber laser for application in an optical clock

  • M. A. Gubin
  • A. N. Kireev
  • A. V. Tausenev
  • A. V. Konyashchenko
  • P. G. Kryukov
  • D. A. Tyurikov
  • A. S. Shelkovikov
Fiber Optics

Abstract

The main elements needed for the realization of a compact femtosecond methane optical clock are developed and studied. A femtosecond laser system on an Er3+ fiber (λ = 1.55 μm) contains an oscillator, an amplifier, and a fiber with a relatively high nonlinearity in which the supercontinuum radiation is generated in the range 1–2 μm. In the supercontinuum spectrum, the fragments separated by an interval that is close to the methane-optical reference frequency (λ = 3.39 μm) exhibit an increase in intensity. The supercontinuum radiation is converted into the difference frequency in a nonlinear crystal to the range of the methane-reference frequency (λ = 3.3–3.5 μm), so that the frequency components of the transformed spectrum have sufficient intensities for the subsequent frequency-phase stabilization with respect to the methane reference. A system that stabilizes the pulse repetition rate of the femtosecond Er3+ laser is also employed. Thus, the repetition rate of the ultrashort pulses of the femtosecond fiber laser is locked to the methane reference. The pulse repetition rate is compared with the standard second. Thus, the scheme of an optical clock is realized.

PACS numbers

06.30.Ft 42.55.Wd 42.65.Ky 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Hall, Nobel Lecture (2005).Google Scholar
  2. 2.
    T. W. Hänsch, Nobel Lecture (2005).Google Scholar
  3. 3.
    S. A. Diddams, T. Udem, J. C. Bergquist, et al., Science 293, 825 (2001).CrossRefADSGoogle Scholar
  4. 4.
    J. Ye, L. S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270 801 (2001).Google Scholar
  5. 5.
    D. J. Jones, S. A. Diddams, J. K. Ranka, et al., Science 288, 635 (2000).CrossRefADSGoogle Scholar
  6. 6.
    S. A. Diddams, J. D. J. Jones, L.-S. Ma, et al., Opt. Lett. 25, 186 (2000).CrossRefADSGoogle Scholar
  7. 7.
    J. Ye, H. Schnatz, and L. W. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1041 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Zimmermann, C. Gohle, R. Holzwarth, et al., Opt. Lett. 29, 310 (2004).CrossRefGoogle Scholar
  9. 9.
    M. A. Gubin, D. A. Tyurikov, A. S. Shelkovnikov, IEEE J. Sel. Top. Quantum Electron. 31, 2177 (1995).CrossRefGoogle Scholar
  10. 10.
    S. Foreman, A. Marian, J. Ye, et al., Opt. Lett. 30, 570 (2005).CrossRefADSGoogle Scholar
  11. 11.
    B. R. Washburn et al., Opt. Lett. 29, 250 (2004).CrossRefADSGoogle Scholar
  12. 12.
    F. Adler, K. Moutzouris, A. Leitenstorfer, et al., Opt. Express 12, 5872 (2004).CrossRefADSGoogle Scholar
  13. 13.
    P. Kubina, P. Adel, F. Adler, et al., Opt. Express 13, 904 (2005).CrossRefADSGoogle Scholar
  14. 14.
    Y. Deng, F. Lu, and W. Know, Opt. Express 13, 4589 (2005).CrossRefADSGoogle Scholar
  15. 15.
    A. V. Tausenev and P. G. Kryukov, Quantum Electron. 34, 106 (2004).CrossRefGoogle Scholar
  16. 16.
    A. V. Tausenev, P. G. Kryukov, M. M. Bubnov, et al., Quantum Electron. 35, 581 (2005).CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • M. A. Gubin
    • 1
  • A. N. Kireev
    • 1
  • A. V. Tausenev
    • 1
    • 2
    • 3
  • A. V. Konyashchenko
    • 1
    • 3
  • P. G. Kryukov
    • 2
  • D. A. Tyurikov
    • 1
  • A. S. Shelkovikov
    • 1
  1. 1.Department of Quantum Radiophysics, Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Scientific Center of Fiber OpticsRussian Academy of SciencesMoscowRussia
  3. 3.Avesta-Project Ltd.Troitsk, Moscow oblastRussia

Personalised recommendations