Laser Physics

, Volume 17, Issue 8, pp 1037–1040 | Cite as

Intracenter Raman silicon lasers

  • S. G. Pavlov
Semiconductor Lasers

Abstract

Raman-type Stokes stimulated emission in the far-infrared wavelength range (52–65 μm) has been realized in silicon crystals doped by group-V hydrogen-like donor centers at low temperatures under optical excitation by radiation from a pulsed frequency-tunable infrared free-electron laser. The light scattering appears as an entire intracenter process and occurs on the donor electronic transitions being resonant to the intervalley transverse acoustic g phonon. The outgoing and incoming electronic donor resonances amplify the efficiency of scattering, so that the Raman optical gain increases to the values observed for the infrared room temperature Raman silicon lasers.

PACS numbers

42.55.Ye 42.65.Dr 71.55.Cn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pavesi, Routes Toward Silicon-Based Lasers, Mater. Today 1, 18 (2005).CrossRefGoogle Scholar
  2. 2.
    M. J. Chen, J. L. Yen, J. Y. Li, et al., Appl. Phys. Lett. 84, 2163 (2004).CrossRefADSGoogle Scholar
  3. 3.
    S. G. Clouter, P. A. Kossyrev, and J. Xu, Nature Mater. 4, 887 (2005).CrossRefADSGoogle Scholar
  4. 4.
    Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Nature (London) 378, 258 (1995).CrossRefADSGoogle Scholar
  5. 5.
    G. Dehlinger, L. Diehl, U. Gennser, et al., Science 290, 2277 (2000).CrossRefGoogle Scholar
  6. 6.
    J. Zhang, X. B. Li, J. H. Neave, et al., J. Crystal Growth 278, 488 (2005).CrossRefGoogle Scholar
  7. 7.
    S. G. Pavlov, R. Kh. Zhukavin, E. E. Orlova, et al., Phys. Rev. Lett. 22, 5220 (2000).CrossRefADSGoogle Scholar
  8. 8.
    A. Polman, B. Min, J. Kalkman, et al., Appl. Phys. Lett. 84, 1037 (2004).CrossRefADSGoogle Scholar
  9. 9.
    S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, Appl. Phys. Lett. 89, 171908 (2006).Google Scholar
  10. 10.
    O. Boyaraz and B. Jalali, Opt. Express 12, 5269 (2004).CrossRefADSGoogle Scholar
  11. 11.
    H. Rong, A. Liu, R. Jones, et al., Nature 433, 292 (2005); H. Rong, R. Jones, A. Liu, et al., Nature 433, 725 (2005).CrossRefADSGoogle Scholar
  12. 12.
    S. G. Pavlov, H.-W. Hübers, H. Riemann, et al., J. Appl. Phys. 92, 5632 (2002).CrossRefADSGoogle Scholar
  13. 13.
    V. N. Shastin, R. Kh. Zhukavin, E. E. Orlova, et al., Appl. Phys. Lett. 80, 3512 (2002).CrossRefADSGoogle Scholar
  14. 14.
    S. G. Pavlov, H.-W. Hübers, M. H. Rümmeli, et al., Appl. Phys. Lett. 80, 4717 (2002).CrossRefADSGoogle Scholar
  15. 15.
    H.-W. Hübers, S. G. Pavlov, R. Kh. Zhukavin, et al., Appl. Phys. Lett. 84, 3600 (2004).CrossRefADSGoogle Scholar
  16. 16.
    S. G. Pavlov, H.-W. Hubers, J. N. Hovenier, et al., Phys. Rev. Lett. 96, 037404 (2006).Google Scholar
  17. 17.
    A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981).CrossRefADSGoogle Scholar
  18. 18.
    M. Asche and O. G. Sarbei, Phys. Status Solidi B 103, 11 (1981), and references therein.CrossRefGoogle Scholar
  19. 19.
    T. G. Castner, Jr., Phys. Rev. 130, 58 (1963).CrossRefADSGoogle Scholar
  20. 20.
    P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed. (Springer, Berlin, 2005), p. 394.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • S. G. Pavlov
    • 1
    • 2
  1. 1.Institute of Planetary ResearchGerman Aerospace CenterBerlinGermany
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesMoscowRussia

Personalised recommendations