Skip to main content
Log in

Difference-frequency pulse generation in quantum well heterolasers

  • Semiconductor Optics
  • Published:
Laser Physics

Abstract

It is shown that mid-to far-infrared (IR) and terahertz (THz) pulse generation via difference-frequency mixing in quantum well (QW) dual-wavelength heterolasers can be rather efficient under the modelocking regime for one or both lasing fields even at room temperature. In such a device, the long-wavelength field is produced in the process of intracavity difference-frequency mixing of two optical fields: continuous wave (CW) and pulsed (or both pulsed), due to the resonant intersubband quantum coherence in QWs, as well as due to the nonresonant second-order semiconductor bulk nonlinearity. The mode-locking regime of the optical generation allows one to significantly enhance the pulsed driving fields in comparison with those under CW operation and, therefore, substantially increase the output difference-frequency power. Within a simple model, an explicit formula for the intensity and shape of the generated IR or THz pulse is derived. It is shown that this method is capable of producing picosecond pulses at a ∼ 1-GHz repetition rate with a peak power of the order of 1 W and ≲0.2 mW at 10 and 50 µm wavelengths, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, D. L. Sivco, et al., Science 264, 553 (1994).

    Article  ADS  Google Scholar 

  2. S. Dhillon, J. Alton, S. Barbieri, et al., Appl. Phys. Lett. 87, 071107 (2005).

  3. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).

    Google Scholar 

  4. L. Duvillaret, F.-F. Caret, J.-F. Roux, and J.-L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 7, 615 (2001).

    Article  Google Scholar 

  5. A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).

    Article  Google Scholar 

  6. M. Hangyo, S. Tomozawa, Y. Murakami, et al., Appl. Phys. Lett. 69, 2122 (2000).

    Article  ADS  Google Scholar 

  7. C. Toth, J. van Tilborg, C. G. Geddes, et al., in Signal Processing, Sensor Fusion, and Target Recognition XIII, Ed. by I. Kadar, Proc. SPIE 5448, 491 (2004).

  8. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    Article  ADS  Google Scholar 

  9. H. Roskos, M. Nuss, J. Shah, et al., Phys. Rev. Lett. 68, 2216 (1992).

    Article  ADS  Google Scholar 

  10. P. Planken, M. Nuss, I. Brener, et al., Phys. Rev. Lett. 69, 3800 (1992).

    Article  ADS  Google Scholar 

  11. P. C. M. Planken, M. C. Nuss, W. H. Knox, et al., Appl. Phys. Lett. 61, 2009 (1992).

    Article  ADS  Google Scholar 

  12. A. A. Belyanin, F. Capasso, V. V. Kocharovsky, et al., Phys. Rev. A 63, 053803 (2001).

    Google Scholar 

  13. A. A. Belyanin, F. Capasso, V. V. Kocharovsky, et al., Nanotechnology 12, 450 (2001).

    Article  ADS  Google Scholar 

  14. V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, Semiconductors 35, 1203 (2001).

    Article  ADS  Google Scholar 

  15. A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. A 65, 053824 (2002).

    Google Scholar 

  16. A. A. Belyanin, D. Deppe, V. V. Kocharovsky, et al., Phys. Usp. 46, 986 (2003).

    Article  ADS  Google Scholar 

  17. M. O. Scully, A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, US Patent No. 6,782,020 (2004).

  18. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  19. In particular, generation of few-cycle IR or THz pulses in QWs pumped by fs optical laser was discussed in A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, et al., J. Mod. Opt. 51, 2523 (2004).

  20. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, Opt. Express 11, 2486 (2003).

    Article  ADS  Google Scholar 

  21. Liu et al., in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 56.

    Google Scholar 

  22. Semiconductor Lasers, Ed. by E. Kapon (Academic, San Diego, 1999).

    Google Scholar 

  23. Intersubband Transitions in Quantum Wells: Physics and Devices, Ed. by S. S. Li and Y.-K. Su (Kluwer, Boston, 1998).

    Google Scholar 

  24. Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).

    Article  Google Scholar 

  25. P. J. Delfyett, “Ultrafast Single-and Multiwavelength Modelocked Semiconductor Lasers: Physics and Applications,” in Ultrafast Lasers: Technology and Applications, Ed. by M. E. Fermann, A. Galvanauskas, and G. Sucha (Marcel Dekker, New York, 2001).

    Google Scholar 

  26. V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).

    Article  ADS  Google Scholar 

  27. Y.-C. Chang and R. B. James, Phys. Rev. B 39, 12672 (1989).

    Article  ADS  Google Scholar 

  28. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1998).

    Google Scholar 

  29. L. Goldberg and D. Mehuys, Appl. Phys. Lett. 65, 522 (1994).

    Article  ADS  Google Scholar 

  30. A. Mar, R. Helkey, W. Zou, et al., Appl. Phys. Lett. 66, 3558 (1995).

    Article  ADS  Google Scholar 

  31. G. Sangyoun, G. A. Alphonse, J. Connolly, and P. J. Delfyett, Photonic Processing Technology and Applications II, Ed. by A. R. Pirich and M. A. Parker, Proc. SPIE 3384, 12 (1998).

  32. V. A. Kukushkin, V. Ya. Aleshkin, A. A. Belyanin, et al., Phys. Rev. A (in press).

  33. L. A. Vainshtein, Electromagnetic Waves (Sov. Radio, Moscow, 1988) [in Russian].

    Google Scholar 

  34. Ya. L. Khanin, Fundamentals of Laser Dynamics (Cambridge Int. Sci. Publ., Cambridge, 2004).

    Google Scholar 

  35. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987; Mir, Moscow, 1978).

    Google Scholar 

  36. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999).

    MATH  Google Scholar 

  37. M. Asada, IEEE J. Quantum Electron. 25, 2019 (1989).

    Article  ADS  Google Scholar 

  38. M. Hartig, J. D. Ganiere, P. E. Selbmann, et al., Phys. Rev. B 60, 1500 (1999).

    Article  ADS  Google Scholar 

  39. N. Stelmakh and J.-M. Lourtioz, Electron. Lett. 29, 160 (1993).

    Article  Google Scholar 

  40. A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

    Google Scholar 

  41. E. D. Palik, in Handbook of Optical Constatnts of Solids, Ed. by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  42. H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978).

    Google Scholar 

  43. Y. Kaneko, S. Nakagawa, Y. Ichimura, et al., J. Appl. Phys. 87, 1597 (2000).

    Article  ADS  Google Scholar 

  44. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).

    Google Scholar 

  45. Handbook of Optical Materials, Ed. by M. J. Weber (CRC Press, New York, 2003).

    Google Scholar 

  46. B. Jensen, in Handbook of Optical Constatnts of Solids, Ed. by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  47. C. Flytzanis, Phys. Rev. B 6, 1264 (1972).

    Article  ADS  Google Scholar 

  48. A. Mayer and F. Keilmann, Phys. Rev. B 33, 6954 (1986).

    Article  ADS  Google Scholar 

  49. T. Dekorsy, V. A. Yakovlev, W. Seidel, et al., Phys. Rev. Lett. 90, 055508 (2003).

    Google Scholar 

  50. A. A. Afonenko, V. Ya. Aleshkin, and A. A. Dubinov, Semicond. Sci. Technol. 20, 357 (2005).

    Article  ADS  Google Scholar 

  51. A. A. Aleshkin, A. A. Belyanin, A. A. Dubinov, et al., in ICONO 2005, Proc. SPIE 6257, 6257)I-1-8 (SPIE, Bellingham, WA, 2006).

    Google Scholar 

  52. A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. A (2007) (in press).

  53. A. A. Biryukov, V. Ya. Aleshkin, S. M. Nekorkin, et al., J. Mod. Opt. 52, 2323 (2005).

    Article  ADS  Google Scholar 

  54. A. A. Biryukov, B. N. Zvonkov, N. B. Zvonkov, et al., Semiconductors (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukushkin, V.A., Aleshkin, V.Y., Belyanin, A.A. et al. Difference-frequency pulse generation in quantum well heterolasers. Laser Phys. 17, 688–694 (2007). https://doi.org/10.1134/S1054660X07050143

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07050143

PACS numbers

Navigation