Laser Physics

, Volume 17, Issue 4, pp 583–589 | Cite as

UV-VIS absorption spectroscopy of large molecules for applications in matter wave interferometry

  • N. Gotsche
  • H. Ulbricht
  • M. Arndt
Quantum Information and Quantum Computation


We study the optical properties of various large molecules with respect to their suitability for new matter wave interference and detection schemes. Optical phase gratings for molecules will only be compatible with a sufficiently small absorption cross section visible while optical detection schemes may exploit strong UV resonances. We compare UV-VIS spectra of various biomolecules, such as amino acids, polypeptides, and proteins, with those of new perfluoroalkylated molecules and carbon nanotubes, and we discuss their suitability for coherent matter wave experiments.

PACS numbers

33.20.Ea 33.20.Kf 33.20.Lg 39.10.+j 39.30.+w 78.67.Ch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bergmann and C. Schaefer, Optics of Waves and Particles (Gruyter, New York, 2002).Google Scholar
  2. 2.
    E. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).CrossRefADSGoogle Scholar
  3. 3.
    W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).CrossRefADSGoogle Scholar
  4. 4.
    M. Arndt, K. Hornberger, and A. Zeilinger, Phys. World 18, 35 (2005).Google Scholar
  5. 5.
    L. Hackermüller, K. Hornberger, B. Brezger, et al., Nature 427, 711 (2004).CrossRefADSGoogle Scholar
  6. 6.
    Ch. J. Bordé, N. Courtier, F. Du Burck, et al., Phys. Lett. A 188, 187 (1994).CrossRefADSGoogle Scholar
  7. 7.
    W. Schöllkopf and J. P. Toennies, Science 266, 1345 (1994).CrossRefADSGoogle Scholar
  8. 8.
    M. S. Chapman, C. R. Ekstrom, T. D. Hammond, et al., Phys. Rev. Lett. 74, 4783 (1995).CrossRefADSGoogle Scholar
  9. 9.
    L. W. Bruch, W. Schöllkopf, and J. P. Toennies, J. Chem. Phys. 117, 1544 (2002).CrossRefADSGoogle Scholar
  10. 10.
    L. Hackermüller, S. Uttenthaler, K. Hornberger, et al., Phys. Rev. Lett. 91, 90408 (2003).CrossRefADSGoogle Scholar
  11. 11.
    B. Brezger, M. Arndt and A. Zeilinger, J. Opt. B 5, S82 (2003).ADSGoogle Scholar
  12. 12.
    J. F. Clauser and M. W. Reinsch, Appl. Phys. B 54, 380 (1992).CrossRefADSGoogle Scholar
  13. 13.
    B. Brezger, L. Hackermüller, S. Uttenthaler, et al., Phys. Rev. Lett. 88, 100404 (2002).Google Scholar
  14. 14.
    P. L. Kapitza and P. A. M. Dirac, Proc. Camb. Philos. Soc. 29, 297 (1933).zbMATHCrossRefGoogle Scholar
  15. 15.
    O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 87, 160401 (2001).Google Scholar
  16. 16.
    P. F. Coheur, M. Carleer, and R. Colin, J. Phys. B 29, 4987 (1996).CrossRefADSGoogle Scholar
  17. 17.
    M. Marksteiner, G. Kiesewetter, L. Hackermuller, et al., Acta Phys. Hung. B 20 (2006).Google Scholar
  18. 18.
    C. Weickhardt, L. Draack, and A. Amirav, Anal. Chem. 75, 5602 (2003).CrossRefGoogle Scholar
  19. 19.
    E. Reiger, L. Hackermuller, M. Berninger, and M. Arndt, Opt. Comm. 264, 326 (2006).CrossRefADSGoogle Scholar
  20. 20.
    M. J. O’Connell et al., Science 297, 593 (2002).CrossRefADSGoogle Scholar
  21. 21.
  22. 22.
    D. B. Wetlaufer, Adv. Protein Chem. 17, 303 (1962).CrossRefGoogle Scholar
  23. 23.
    S. Gerlich, L. Hackermüller, K. Hornberger, et al., submitted (2007).Google Scholar
  24. 24.
    S. K. Lee, Y. Polyakova, and K. H. Row, Bull. Korean Chem. Soc. 24, 1757 (2003); Scholar
  25. 25.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  26. 26.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, 2nd ed. (Academic, San Diego, 1998).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • N. Gotsche
    • 1
  • H. Ulbricht
    • 1
  • M. Arndt
    • 1
  1. 1.Fakultät für PhysikUniversität WienWienAustria

Personalised recommendations