Skip to main content
Log in

Control of qubits encoded in decoherence-free subspaces

  • Quantum Information and Quantum Computation
  • Published:
Laser Physics

Abstract

Decoherence-free subspaces protect quantum information from the effects of noise that is correlated across the physical qubits used to implement them. Given the ability to impose suitable Hamiltonians upon such a multi-qubit system, one can also implement a set of logical gates which enables universal computation on this information without compromising this protection. Real physical systems, however, seldom come with the correct Hamiltonians built-in, let alone the ability to turn them off and on at will. In the course of our development of quantum information processing devices based on liquid-state NMR, we have found the task of operating on quantum information encoded in decoherence-free subspaces rather more challenging than is commonly assumed. This contribution presents an overview of these challenges and the methods we have developed for overcoming them in practice. These methods promise to be broadly applicable to many of the physical systems proposed for the implementation of quantum information processing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Chuang and M. A. Nielsen, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  2. N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63, 032308 (2001).

    Google Scholar 

  3. J. Botina, H. Rabitz, and N. Rahman, J. Chem. Phys. 104, 4031 (1996).

    Article  ADS  Google Scholar 

  4. P. W. Shor, Phys. Rev. A 52, 2493 (1995).

    Article  ADS  Google Scholar 

  5. A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).

    Article  ADS  Google Scholar 

  6. P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 17 (1997).

    Article  Google Scholar 

  7. L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 79, 1953 (1997).

    Article  ADS  Google Scholar 

  8. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998).

    Article  ADS  Google Scholar 

  9. U. Haeberlen, High Resolution NMR in Solids: Selective Averaging (Academic Press, New York, 1976).

    Google Scholar 

  10. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. L. Viola and E. Knill, Phys. Rev. Lett. 90, 037901 (2003).

    Google Scholar 

  12. K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180 501 (2005).

    Google Scholar 

  13. E. Fortunato et al., J. Chem. Phys. 116, 7599 (2002).

    Article  ADS  Google Scholar 

  14. M. A. Pravia et al., J. Chem. Phys. 119, 9993 (2003).

    Article  ADS  Google Scholar 

  15. L. Viola, E. Knill, and R. Laflamme, J. Phys. A 34, 7076 (2001).

    Article  MathSciNet  Google Scholar 

  16. E. Fortunato, L. Viola, J. Hodges, et al., New J. Phys 4, 5 (2002).

    Article  ADS  Google Scholar 

  17. L. Tian and S. Lloyd, Phys. Rev. A 62, 050301 (2000).

  18. L.-A. Wu, M. S. Byrd, and D. A. Lidar, Phys. Rev. Lett. 89, 127901 (2002).

    Google Scholar 

  19. E. Hahn, Phys. Rev. 80, 580 (1950).

    Article  MATH  ADS  Google Scholar 

  20. M. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).

    Article  Google Scholar 

  21. N. Khaneja, T. Reiss, C. Kehlet, et al., J. Magn. Res. 172, 296 (2005).

    Article  ADS  Google Scholar 

  22. R. Ghose, Conc. Magn. Res. 12, 152 (2000).

    Article  Google Scholar 

  23. Y. C. Cheng and R. J. Silbey, Phys. Rev. A 69, 052325 (2004).

    Google Scholar 

  24. P. Cappellaro, J. Hodges, T. Havel, and D. Cory, J. Chem. Phys. 125, 44514 (2006).

    Google Scholar 

  25. M. Nielsen, Phys. Lett. A 303, 249 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappellaro, P., Hodges, J.S., Havel, T.F. et al. Control of qubits encoded in decoherence-free subspaces. Laser Phys. 17, 545–551 (2007). https://doi.org/10.1134/S1054660X0704038X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0704038X

PACS numbers

Navigation