Skip to main content
Log in

Mean-field phase diagram for Bose-Hubbard Hamiltonians with random hopping

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

The zero temperature phase diagram for ultracold bosons in a random 1D potential is obtained through a site decoupling mean-field scheme performed over a Bose-Hubbard (BH) Hamiltonian, whose hopping term is considered as a random variable. As for the model with random on-site potential, the presence of disorder leads to the appearance of a Bose glass phase. The different phases—i.e., Mott insulator, superfluid, and Bose glass—are characterized in terms of condensate fraction and superfluid fraction. Furthermore, the boundary of the Mott lobes is related to an off-diagonal Anderson model featuring the same disorder distribution as the original BH Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jaksch and P. Zoller, Ann. Phys. 315, 52 (2005).

    Article  MATH  ADS  Google Scholar 

  2. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).

    Article  ADS  Google Scholar 

  3. J. E. Lye, L. Fallani, M. Modugno, et al., Phys. Rev. Lett. 95, 070401 (2005); D. Clement, A. F. Varon, M. Hugbart, et al., ibid., 170409; C. Fort, L. Fallani, V. Guarrera, et al., ibid., 170410.

  4. R. Roth, Phys. Rev. A 68, 023604 (2003).

    Google Scholar 

  5. B. Damski, J. Zakrzewski, L. Santos, et al., Phys. Rev. Lett. 91, 080403 (2003); T. Schulte, S. Drenkelforth, J. Kruse, et al., ibid., 170411.

  6. L. Fallani, J. E. Lye, V. Guarrera, et al., condmat/0603655.

  7. M. Wallin, E. S. Sørensen, S. M. Girvin, and A. P. Young, Phys. Rev. B 49, 12115 (1994); M. B. Hastings, Phys. Rev. B 64, 024517 (2001); R. Graham and A. Pelster, cond-mat/0508306 (2005).

  8. B. V. Svistunov, Phys. Rev. B 54, 16131 (1996).

    Google Scholar 

  9. F. Pázmándi and G. T. Zimányi, Phys. Rev. B 57, 5044 (1998).

    Article  Google Scholar 

  10. K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Euorphys. Lett. 22 (1993).

  11. W. Krauth, M. Caffarel, and J.-P. Bouchaud, Phys. Rev. B 45, 3137 (1992).

    Article  ADS  Google Scholar 

  12. K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Phys. Rev. Lett. 75, 4075 (1995).

    Article  ADS  Google Scholar 

  13. K. V. Krutitsky, et al., New J. Phys. 8, 187 (2006).

    Article  ADS  Google Scholar 

  14. R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys. Rev. Lett. 66, 3144 (1991); W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67, 2307 (1991); G. G. Batrouni and R. T. Scalettar, Phys. Rev. B 46, 9051 (1992); J. Kisker and H. Rieger, Phys. Rev. B 55, R11981 (1997); P. Hitchcock and E. S. Sorensen, Phys. Rev. B 73, 174523 (2006).

    Article  ADS  Google Scholar 

  15. J.-W. Lee and M.-C. Cha, Phys. Rev. B 70, 052513 (2004).

  16. K. G. Singh and D. S. Rokhsar, Phys. Rev. B 49, 9013 (1994); A. D. Martino, M. Thorwart, R. Egger, and R. Graham, Phys. Rev. Lett. 94, 060402 (2005).

    Article  ADS  Google Scholar 

  17. J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

    Article  ADS  Google Scholar 

  18. R. V. Pai, R. Pandit, H. R. Krishnamurthy, and S. Ramasesha, Phys. Rev. Lett. 76, 2937 (1996).

    Article  ADS  Google Scholar 

  19. S. Rapsch, U. Schöllwock, and W. Zwerger, Europhys. Lett. 46, 559 (1999).

    Article  ADS  Google Scholar 

  20. R. Pugatch, N. Bar-Gill, N. Katz, E. Rowen, and N. Davidson, cond-mat/0603571 (2006); P. Louis and M. Tsubota, cond-mat/0609195 (2006).

  21. P. Buonsante, V. Penna, A. Vezzani, and P. Blakie, condmat/0610476 (2006).

  22. O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

    Article  MATH  ADS  Google Scholar 

  23. S. Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  24. D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys. Rev. A 63, 053601 (2001).

    Google Scholar 

  25. A. S. Ferreira and M. A. Continentino, Phys. Rev. B 66, 014525 (2002).

    Google Scholar 

  26. J.-B. Bru and T. Dorlas, J. Stat. Phys. 113, 177 (2004).

    Article  MathSciNet  Google Scholar 

  27. P. Buonsante and A. Vezzani, Phys. Rev. A 70, 033608 (2004).

    Google Scholar 

  28. A. Rey, K. Burnett, R. Roth, et al., J. Phys B 36, 825 (1993).

    Article  ADS  Google Scholar 

  29. P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. A 70, 061603(R) (2004).

  30. P. Buonsante, V. Penna, and A. Vezzani, Las. Phys. 15, 361 (2005).

    Google Scholar 

  31. F. J. Dyson, Phys. Rev. 92, 1331 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonsante, P., Massel, F., Penna, V. et al. Mean-field phase diagram for Bose-Hubbard Hamiltonians with random hopping. Laser Phys. 17, 538–544 (2007). https://doi.org/10.1134/S1054660X07040378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040378

PACS numbers

Navigation