Skip to main content
Log in

Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves

  • Biophotonics
  • Published:
Laser Physics

Abstract

Biomedical optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological and functional changes in human tissue without the drawback of ionizing radiation. Of special promise is the application of this technology for the detection of joint diseases, such as rheumatoid arthritis (RA). It has been shown that optical changes in the synovial fluid and the vasculature surrounding the joints can be detected with optical methods. Applying optical tomographic methods one should be able to localize and quantify these changes for detection of the onset of RA. The first studies have been limited to continuous wave imaging. However, it is well known that enhanced resolution and better separation between absorption and scattering properties of tissue can be achieved using intensity modulated light sources. Intensity modulation of laser light in the MHz region leads to propagation of so-called diffuse photon density waves (PDW) through the tissue In this study we report on basic experimental results to determine performance and sensitivity of PDW-transillumination of tissue like phantoms. We used a vector network analyzer to generate and analyze intensity modulation from 100 MHz up to 1 GHz via a diode laser and an avalanche photo diode. Scans were performed across phantoms containing a layer with different absorbing and scattering properties bounded by an edge. The thickness of the phantoms was chosen similar to human fingers to gain information for optimization of tomographic imaging of finger joints. We experimentally determined the signal-to-noise ratio (SNR) of the system and compared the results to theoretical predictions. Noise and SNR of amplitude and phase depend on frequency of modulation. While the amplitude SNR decreases with frequency, phase SNR increases to assume a maximum value. We found that the inserted layer can be better characterized using phase information, which becomes more valuable as the source modulation frequency is increased. On the other hand, the sensitivity to perturbations is highest in the amplitude data obtained at lower frequencies. Thus, for tomographic imaging, optimal modulation frequencies should be found depending on the tissue type and nature of tissue inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beuthan, O. Minet, G. Müller, and V. Prapavat, in Medical Optical Tomography: Functional Imaging and Monitoring, Ed. by G. Müller, B. Chance, R. Alfano, et al. (SPIE, Bellingham, Washington, 1993), p. 263.

    Google Scholar 

  2. V. Prapavat, W. Runge, A. Krause, et al., Minimal Invasive Med. 8(1–2), 7 (1997).

    Google Scholar 

  3. Y. Xu, N. Iftimia, H. Jiang, et al., Opt. Express 8, 447 (2001).

    Article  ADS  Google Scholar 

  4. J. Beuthan, U. Netz, O. Minet, et al., Quantum Electron. 32, 945 (2002).

    Article  ADS  Google Scholar 

  5. Y. Xu, N. Iftimia, H. Jiang, et al., J. Biomed. Opt. 7, 88 (2002).

    Article  ADS  Google Scholar 

  6. A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, et al., Arthritis Rheum. 46, 1177 (2002).

    Article  Google Scholar 

  7. A. Schwaighofer, V. Tresp, P. Mayer, et al., IEEE Trans. Biomed. Eng. 50, 375 (2003).

    Article  Google Scholar 

  8. A. D. Klose and A. H. Hielscher, Med. Phys. 26, 1698 (1999).

    Article  Google Scholar 

  9. A. H. Hielscher, A. Klose, A. K. Scheel, et al., Phys. Med. Biol. 49, 1147 (2004).

    Article  Google Scholar 

  10. A. K. Scheel, M. Backhaus, A. D. Klose, et al., Ann. Rheum. Dis. 64, 239 (2005).

    Article  Google Scholar 

  11. J. B. Fishkin, E. Gratton, M. J. VandeVen, and W. W. Mantulin, Proc. SPIE 1431, 122 (1991).

    Article  ADS  Google Scholar 

  12. S. R. Arridge and W. R. B. Lionheart, Opt. Lett. 23, 882 (1998).

    ADS  Google Scholar 

  13. S. R. Arridge, Inverse Probl. 15, R41 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Appl. Opt. 36, 75 (1997).

    ADS  Google Scholar 

  15. J. B. Fishkin and E. Gratton, J. Opt. Soc. Am. 10, 127 (1993).

    Article  ADS  Google Scholar 

  16. H. Wabnitz and H. Rinneberg, Appl. Opt. 36, 64 (1997).

    Article  ADS  Google Scholar 

  17. J. Beuthan, V. Prapavat, R. Naber, et al., Proc. SPIE 2676, 43 (1996).

    Article  ADS  Google Scholar 

  18. I. Mesecke-von Rheinbaben, A. Roggan, J. Helfman, et al., Proc. SPIE 3601, 482 (1999).

    Article  ADS  Google Scholar 

  19. V. Toronov, E. D’Amico, D. Hueber, et al., Opt. Express 11, 2717 (2003).

    Article  ADS  Google Scholar 

  20. M. S. Patterson, B. W. Pogue, and B. C. Wilson, in Medical Optical Tomography: Functional Imaging and Monitoring, Ed. by G. Müller, B. Chance, R. Alfano, et al. (SPIE, Bellingham, Washington, 1993), p. 513.

    Google Scholar 

  21. L. Montandon, D. Salzmann, F. Bevilacqua, and C. Depeursinge, Proc. SPIE 3566, 236 (1998).

    Article  ADS  Google Scholar 

  22. J. B. Fishkin, S. Fantini, M. J. VandeVen, and E. Gratton, Phys. Rev. E 53, 2307 (1996).

    Article  ADS  Google Scholar 

  23. U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, Laser Phys. 16, 765 (2006).

    Article  ADS  Google Scholar 

  24. A. Roggan, O. Minet, C. Schrönder, and G. Müller, in Medical Optical Tomography: Functional Imaging and Monitoring, Ed. by G. Müller, B. Chance, R. Alfano, et al. (SPIE, Bellingham, Washington, 1993), p. 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netz, U.J., Hielscher, A.H., Scheel, A.K. et al. Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves. Laser Phys. 17, 453–460 (2007). https://doi.org/10.1134/S1054660X07040238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040238

PACS numbers

Navigation