Skip to main content
Log in

Free electron motion in an electromagnetic field at zero temperature and the dependence on its rest mass

  • Modern Trends in Laser Physics
  • Published:
Laser Physics

Abstract

Efforts to achieve quantum computation, teleportation, and communication depend on minimizing decoherence, which is the destruction of a quantum interference pattern. Here, we examine effects arising from the universal zero-point (temperature T = 0) oscillations of the electromagnetic field on a free electron in a Schrödinger cat superposition state. A unique conclusion is that the spreading of an electron wavepacket and the rate of decay of decoherence depend on the bare mass m of the electron. However, only for m = 0 does decoherence occur and the fact that it occurs almost instantly is ruled out by electron interference experiments. For m ≠ 0, the electron essentially behaves as a free particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Giulini, E. Joos, C. Kicfer, et al., Decoherence and Appearance of a Classical World in Quantum Theory (Springer, New York, 1996).

    MATH  Google Scholar 

  2. G. W. Ford and R. F. O’Connell, Phys. Rev. D 64, 105 020 (2001); Ann. Phys. (N.Y.) 319, 348 (2005).

  3. G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 64, 032101 (2001).

    Google Scholar 

  4. P. A. M. Dirac, Proc. R. Soc. London, Ser. A 114, 243 (1927).

    ADS  Google Scholar 

  5. G. W. Ford, J. T. Lewis, and R. F. O’Connell, J. Opt. B 5, 5609 (2003).

    Google Scholar 

  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995), p. 165, Eq. (4.3-19).

    Google Scholar 

  7. A. A. Michelson, Philos. Mag. 30, 1 (1890).

    Google Scholar 

  8. F. Zernike, Physica 5, 785 (1938).

    Article  ADS  Google Scholar 

  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995), Eqs. (4.3-25) and (4.3-25a).

    Google Scholar 

  10. G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. W. Ford and R. F. O’Connell, Phys. Rev. A 73, 032103 (2006).

    Google Scholar 

  13. R. P. Feynman, Quantum Electrodynamics (Addison-Wesley, Reading, MA, 1998), p. 142.

    Google Scholar 

  14. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).

    Google Scholar 

  15. C. Jonsson, Z. Phys. 161, 454 (1961); translated by D. Brandt and S. Hirschi, Am. J. Phys. 42, 4 (1974); A. Tonomura et al., Am. J. Phys. 57, 117 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, G.W., O’Connell, R.F. Free electron motion in an electromagnetic field at zero temperature and the dependence on its rest mass. Laser Phys. 17, 302–304 (2007). https://doi.org/10.1134/S1054660X07040020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040020

PACS numbers

Navigation