Skip to main content
Log in

Spectrum of fast electrons in a dense gas in the presence of a nonuniform pulsed field

  • Gas Lasers
  • Published:
Laser Physics

Abstract

The problems of gas preionization in discharges related to laser physics are considered. The propagation of fast electrons injected from the cathode in the presence of a nonuniform nonstationary field and the motion of multiplying electrons at the edge of the avalanche in the presence of a nonuniform nonstationary field are simulated. The effect of the voltage pulse steepness and the field nonuniformity on the mean propagation velocity of fast electrons and their energy distribution is demonstrated. At certain combinations of the voltage pulse rise time and amplitude and at a certain time interval, the center of gravity of the electron cloud can move in the opposite direction relative to the direction of force acting upon electrons. It is also demonstrated that the number of hard particles (and, hence, the hard component of the x-ray bremsstrahlung) increases with both an increase in the voltage amplitude and a decrease in the pulse rise time. For nonoptimal conditions of the picosecond voltage pulse, an assumption is formulated: an electron beam in gas is formed due to the electrons at the edge of the avalanche rather than the background multiplication wave approaching the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 174, 953 (2004) [Phys. Usp. 47, 887 (2004)].

    Article  Google Scholar 

  2. V. F. Tarasenko and S. I. Yakovlenko, “High-Power Subnanosecond Beams of Runaway Electrons Generated in Dense Gases,” Phys. Scr. 72(1), 41–46 (2005).

    Article  ADS  Google Scholar 

  3. V. F. Tarasenko and S. I. Yakovlenko, “High-Power Subnanosecond Beams of Runaway Electrons and Volume Discharge Formation in Gases at Atmospheric Pressure,” Plasma Devices Op. 13(4), 231–279 (2005).

    Article  Google Scholar 

  4. S. I. Yakovlenko, Zh. Tekh. Fiz. 74(9), 47 (2004) [Tech. Phys. 49, 1150 (2004)].

    Google Scholar 

  5. S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 2, 10 (2006).

  6. V. A. Gundienkov and S. I. Yakovlenko, Zh. Tekh. Fiz. 76(9), 130 (2006) [Tech. Phys. 51, 1237 (2006)].

    Google Scholar 

  7. S. I. Yakovlenko, Laser Phys. 16, 403 (2006).

    Article  ADS  Google Scholar 

  8. A. N. Tkachev and S. I. Yakovlenko, “Deceleration and Acceleration of Fast Electrons in a Dense Gas in an electric Field,” Zh. Tekh. Fiz. 76(5), 42 (2006) [Tech. Phys. 51, 574 (2006)].

    Google Scholar 

  9. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Tekh. Fiz. 32(12), 68 (2006) [Tech. Phys. Lett. 32, 572 (2006)].

    Google Scholar 

  10. G. A. Mesyats, S. D. Korovin, K. A. Sharypov, et al., “Dynamics of Subnanosecond Electron Beam Formation in Gas-Filled on Vacuum Diodes,” Pis’ma Zh. Tekh. Fiz. 32(1), 35 (2006) [Tech. Phys. Lett. 32, 18 (2006)].

    Google Scholar 

  11. P. B. Repin and A. G. Rep’ev, Zh. Tekh. Fiz. 74(7), 33 (2004) [Tech. Phys. 49, 839 (2004)].

    Google Scholar 

  12. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, “Nanosecond Volume Discharges in Air under Atmospheric Pressure and X-Ray Radiation from Discharge Gap,” Kratk. Soobshch. Fiz., No. 11, 12–21 (2005).

  13. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkashev, and S. I. Yakovlenko, “X-Ray Radiation Due to Nanosecond Volume Discharges in Air under Atmospheric Pressure,” Zh. Tekh. Fiz. 76(3), 64–69 (2006) [Tech. Phys. 51, 356 (2006)].

    Google Scholar 

  14. B. A. Trubnikov, “Collision of Particles in Fully Ionized Plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Issue 1.

    Google Scholar 

  15. D. V. Sivukhin, “Coulomb Collisions in Fully Ionized Plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Issue 4.

    Google Scholar 

  16. A. N. Tkachev and S. I. Yakovlenko, “Coulomb Explosion of a Laser Plasma,” Kvantovaya Elektron. 20, 1117–1120 (1993) [Quantum Electron. 23, 972 (1993)].

    Google Scholar 

  17. Gas and Plasma Lasers, Ed. by S. I. Yakovlenko (Nauka, Moscow, 2005); Series Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov [in Russian].

    Google Scholar 

  18. V. F. Tarasenko and S. I. Yakovlenko, “Ob Runaway Electrons and Generation of Power Subnanosecond Beams in Demse Gases,” Preprint No. 43, IOF RAN (2006).

  19. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 176, 793 (2006).

    Google Scholar 

  20. V. F. Tarasenko, S. I. Yakovlenko, S. A. Shunailov, et al., “On the Mechanism of Subnanosecond Electron Beam Formation in Gas-Filled Diodes,” Laser Phys. 16(3), 526–533 (2006).

    Article  ADS  Google Scholar 

  21. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, “X-Ray Radiation Due to Nanosecond Volume Discharges in Air under Atmospheric Pressure,” Tekh. Fiz. 76, 64–69 (2006) [Tech. Phys. 51, 356 (2006)].

    Google Scholar 

  22. A. N. Tkachev and S. I. Yakovlenko, “Soft X-Ray Radiation at High-Voltage Nanosecond Breakdown of Dense Gases,” Kratk. Soobshch. Fiz. (2006) (in press).

  23. V. F. Tarasenko, S. I. Yakovlenko, A. N. Tkachev, and I. D. Kostyrya, “Energy Distribution of Runaway and Fast Electrons upon Nanosecond Space Discharge in Atmospheric-Pressure Air,” Laser Phys. 16, 1039–1049 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachev, A.N., Yakovlenko, S.I. Spectrum of fast electrons in a dense gas in the presence of a nonuniform pulsed field. Laser Phys. 17, 5–11 (2007). https://doi.org/10.1134/S1054660X07010021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07010021

PACS numbers

Navigation