Skip to main content
Log in

Numerical Simulations of femtosecond-laser-induced dynamic alignment of molecules in the high-frequency off-resonance regime

  • Ultrafast Optics and Strong-Field Physics
  • Published:
Laser Physics

Abstract

The motion equation for ϑ between the molecular axis and laser polarization direction in a high-frequency off-resonance femtosecond laser field is deduced while simultaneously examining the effects of a permanent dipole moment and field-induced polarizability and hyperpolarizability to molecular rotation. Femtosecond-laser-induced dynamic alignment of CO, N2, and Br2 molecules are investigated by numerically solving the obtained rotation equation for the angle ϑ. The effects of the molecular permanent dipole moment and the field-induced polarizability and hyperpolarizability on the degree of alignment are presented at different intensities. Our computational results show that the dynamic alignment of molecules is primarily determined by field-induced polarizability and the second hyperpolarizability for the laser intensity range from 5 × 1014 to 5 × 1016 W/cm2. The contributions of higher order correction terms to molecular alignment can usually be neglected. The polarizability-field interaction makes the angular distributions of a molecule have a maximum along the polarization axis and a minimum perpendicular to it. The role of the second hyperpolarizability keeps the molecular counts maximum along the laser polarization direction but minimum at an angle of 45° between the molecular axis and the polarization direction. There is also a second maximum of molecular counts perpendicular to the polarization axis. For CO, N2, and Br2 molecules, the dependences of laser-induced dynamic alignment on laser intensity exhibit completely different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Miyazaki, T. Shimizu, and D. Normand, J. Phys. B: At. Mol. Opt. Phys. 34, 753 (2004).

    Article  ADS  Google Scholar 

  2. J. Itatani, D. Zeidler, J. Levesque, et al., Phys. Rev. Lett. 94, 123902 (2005).

  3. T. K. Kjeldsen, C. Z. Bisgaard, and L. B. Madsen, Phys. Rev. A 71, 013418 (2005).

    Google Scholar 

  4. N. Hay, R. Velotta, M. Lein, et al., Phys. Rev. A 65, 053805 (2002).

  5. R. de Nalda, E. Heesel, M. Lein, et al., Phys. Rev. A 69, 031804 (2004).

  6. B. Friedrich and D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995).

    Article  ADS  Google Scholar 

  7. J. D. Weinstein et al., Nature (London) 395, 148 (1998).

    Article  ADS  Google Scholar 

  8. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).

    Article  ADS  Google Scholar 

  9. F. Rosca-Pruna, E. Springate, H. L. Offerhaus, et al., J. Phys. B: At. Mol. Opt. Phys. 34, 4919 (2001).

    Article  ADS  Google Scholar 

  10. P. Graham, K. W. D. Ledingham, R. P. Singhal, et al., J. Phys. B: At. Mol. Opt. Phys. 32, 5557 (1999).

    Article  ADS  Google Scholar 

  11. V. R. Bhardwaj, K. Vijayalakshmi, and D. Mathur, Phys. Rev. A 56, 2455 (1997).

    Article  ADS  Google Scholar 

  12. J. X. Chen, R. Ma, H. Z. Ren, et al., Int. J. Mass Spectrom. 241, 25 (2005).

    Article  Google Scholar 

  13. E. Springate, F. Rosca-Pruna, H. L. Offerhaus, et al., J. Phys. B: At. Mol. Opt. Phys. 34, 4939 (2001).

    Article  ADS  Google Scholar 

  14. S. Banerjee, D. Mathur, and G. R. Kumar, Phys. Rev. A 63, 045401 (2001).

    Google Scholar 

  15. J. X. Chen and X. F. Li, Int. J. Mass Spectrom. 243, 155 (2005).

    Article  Google Scholar 

  16. D. Sugny, A. Keller, and O. Atabek, Phys. Rev. A 69, 043407 (2004).

  17. A. Jaroń-Becker, A. Becker, and F. H. M. Faisal, Phys. Rev. A 69, 023410 (2004).

    Google Scholar 

  18. C. M. Dion, A. Keller, O. Atabek and A. D. Bandrauk, Phys. Rev. A 59, 1382 (1999).

    Article  ADS  Google Scholar 

  19. Z. X. Zhao, X. M. Tong, and C. D. Lin, Phys. Rev. A 67, 043404 (2003).

  20. J. H. Posthumus, J. Plumridge, M. K. Thomas, et al., J. Phys. B: At. Mol. Opt. Phys. 31, L553 (1998).

    Article  ADS  Google Scholar 

  21. Ch. Ellert and P. B. Corkum, Phys. Rev. A 59, R3170 (1999).

    Article  ADS  Google Scholar 

  22. M. Leibscher, I. Sh. Averbukh, and H. Rabitz, Phys. Rev. A 69, 013402 (2004).

  23. T. Kanai and H. Sakai, J. Chem. Phys. 115, 5492 (2001).

    Article  ADS  Google Scholar 

  24. A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).

    Google Scholar 

  25. J. H. Posthumus, A. J. Giles, M. R. Thompson, and K. Codling, J. Phys. B: At. Mol. Opt. Phys. 29, 5811 (1996).

    Article  ADS  Google Scholar 

  26. S. Chelkowski and A. D. Bandrauk, J. Phys. B: At. Mol. Opt. Phys. 28, L723 (1995).

    Article  ADS  Google Scholar 

  27. G. Maroulis, J. Phys. Chem. 100, 13466 (1996).

    Article  Google Scholar 

  28. G. Maroulis, J. Chem. Phys. 118, 2673 (2003).

    Article  ADS  Google Scholar 

  29. G. Maroulis and C. Makris, Mol. Phys. 91, 333 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Cui, X., Zhuo, S. et al. Numerical Simulations of femtosecond-laser-induced dynamic alignment of molecules in the high-frequency off-resonance regime. Laser Phys. 16, 1672–1680 (2006). https://doi.org/10.1134/S1054660X06120139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06120139

PACS numbers

Navigation