Skip to main content
Log in

Entropy squeezing of a single-cooper-pair box with a generalized geometric state

  • Quantum Information and Computation
  • Published:
Laser Physics

Abstract

Adopting the framework of single electrons or Cooper pairs where the rate of particle transfer is controlled by an external frequency, we investigate the dynamics of the coupled system, considering the single-mode cavity field prepared in a generalized geometric state. Considering a density matrix approach, we obtain a full description of the dynamics of the coupled system for a weak quantized radiation field. Using the relevant processes involved in the detection of the charge state of the box and a realistic description of the gate pulse, we are able to analyze some aspects of the information entropy in a quantitative way. We aim to clarify results from previous work, alluding to a link between the entropy squeezing and entanglement. The numerical and analytical results obtained in this work elucidate information entropy effects. We also show that the occupation probability amplitudes possess regular structures with collapses and revivals in the Rabi oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Keyes, Computer 38, 65 (2005); M. Hirvensalo, Comput. J. 47, 270 (2004).

    Article  Google Scholar 

  2. N. M. Chtchelkatchev, G. Blatter, G. B. Lesovik, and T. Martin, Phys. Rev. B 66, 161320(R) (2002).

  3. A. Guillaume, F. Schneiderman, P. Delsing, et al., Phys. Rev. B 69, 132 504 (2004).

  4. T. Duty, D. Gunnarsson, K. Bladh, et al., Phys. Rev. B 69, 140503 (2004).

  5. A. Shnirman, G. Schn, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).

    Article  ADS  Google Scholar 

  6. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999); Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Phys. Rev. Lett. 87, 246601 (2001); I. Chiorescu, P. Bertet, K. Semba, et al., Nature 431, 159 (2004).

    Article  ADS  Google Scholar 

  7. P. Echternach, C. P. Williams, S.C. Dultz, et al., Quantum Inf. and Comput. 1 (Special), 143 (2001).

    Google Scholar 

  8. D. V. Averin, “Adiabatic Quantum Computation with Cooper Pairs,” Solid State Commun. 105, 659 (1998).

    Article  Google Scholar 

  9. Y. Makhlin, G. Schn, and A. Shnirman, Nature 398, 305 (1999).

    Article  ADS  Google Scholar 

  10. M. Ohya, IEEE. Trans. Inf. Theory 29, 770 (1983).

    Article  MATH  Google Scholar 

  11. Ch. C. Moustakidis and S. E. Massen, Phys. Rev B 71, 045 102 (2005); J. N. Kapur, Maximum-Entropy Models in Science and Engineering (Wiley, New York, 1989).

  12. I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Luo and Q. Zhang, IEEE Trans. Inf. Theory 50, 1778 (2004).

    Article  MathSciNet  Google Scholar 

  14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  15. S. E. Massen, Ch. C. Moustakidis, and C. P. Panos, Phys. Lett A 299, 131 (2002).

    Article  MATH  ADS  Google Scholar 

  16. J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).

  17. A. J. Berkley, H. Xu, R. C. Ramos, et al., Science 300, 1548 (2003).

    Article  ADS  Google Scholar 

  18. L. F. Wei and F. Nori, Europhys. Lett. 67, 1004 (2004).

    Article  ADS  Google Scholar 

  19. F. Plastina and G. Falci, Phys. Rev. B 67, 224514 (2003).

  20. D. V. Averin and C. Bruder, Phys. Rev. Lett. 91, 057003 (2003).

    Google Scholar 

  21. A. Wallraff, D. I. Schuster, A. Blais, et al., Nature (London) 431, 162 (2004).

    Article  ADS  Google Scholar 

  22. D. M. Meekhof, C. Monroe, B. E. King, et al., Phys. Rev. Lett. 76, 1796 (1996); C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996); B. Roy and P. Roy, J. Opt. B: Quantum Semiclass. Opt. 2, 505 (2000); A. T. Avelar, L. A. de Souza, T. M. da-Rocha Filho, and B. Baseia, J. Opt. B: Quantum Semiclass. Opt. 6, 383 (2004); S. Osnaghi, P. Bertet, A. Auffeves, et al., Phys. Rev. Lett. 87, 037902 (2001).

    Article  ADS  Google Scholar 

  23. I. A. Malkin and V. I. Manko, Sov. Phys. JETP 28, 527 (1969).

    ADS  Google Scholar 

  24. A. T. Avelar, L. A. de Souza, T. M. daRocha Filho, and B. Baseia, J. Opt. B: Quantum Semiclass. Opt. 6, 383 (2004).

    Article  ADS  Google Scholar 

  25. V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 4, R1 (2002); R. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  26. H. A. Batarfi, M. S. Abdalla, A.-F. F. Obada, and S. S. Hassan, Phys. Rev. A 51, 2644 (1995); A.-F. F. Obada, S. S. Hassan, R. R. Puri, and M. S. Abdalla, Phys. Rev. A 48, 3174 (1993); M. S. Abdalla and A. S. F. Obada, in Mathematics and the 21st Century, Ed. by A. A. Ashour and A. S. F. Obada (World Sci., Singapore, 2001), pp. 323–356; A. Batarfi, M. S. Abdalla, S. S. Hassan, Nonlinear Optics 16, 131 (1996).

    Article  ADS  Google Scholar 

  27. J. S. Tsai, Y. Nakamura, and Yu. Pashkin, Physica C 367, 191 (2002).

    Article  ADS  Google Scholar 

  28. D. Gunnarsson, T. Dutya, K. Bladh, et al., Physica E 18, 27 (2003).

    ADS  Google Scholar 

  29. D. Vion, A. Aassime, A. Cottet, et al., Science 296, 886 (2002).

    Article  ADS  Google Scholar 

  30. R. Migliore, A. Messina, and A. Napoli, Eur. Phys. J. B 13, 585 (2000); 22, 111 (2001).

    ADS  Google Scholar 

  31. M. Zhang, J. Zpu, and B. Shao, Int. J. Mod. Phys. B 16, 4767 (2002).

    Article  ADS  Google Scholar 

  32. J. N Crnugelj, M. Martinis, and V. Mikuta-Martinis, Phys. Rev. A 50, 1785 (1994).

    Article  ADS  Google Scholar 

  33. W. Krech and T. Wagner, Phys. Lett. A 275, 159 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Orszag, Quantum Optics (Springer, Berlin, 2000).

    MATH  Google Scholar 

  35. C. Shannon and W. Weaver, The Mathematical Theory of Communication (Univ. of Illinois, Urbana, 1949).

    MATH  Google Scholar 

  36. J. von Neumann, Gott. Nachr., 279 (1927); J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1955; Nauka, Moscow, 1964).

  37. V. Giovannetti, Phys. Rev. A 70, 012102 (2004).

    Google Scholar 

  38. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983); W. Heisenberg, Z. Phys. 43, 172 (1927).

    Article  MathSciNet  ADS  Google Scholar 

  39. V. Majernik and L. Richterek, Eur. J. Phys. 18, 79 (1997).

    Article  MathSciNet  Google Scholar 

  40. H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Sanchez, Phys. Lett. A 173, 233 (1993); 201, 125 (1995); 244, 189 (1998); M.-F. Fang, P. Zhou, and S. Swain, J. Mod. Opt. 47, 1043 (2000); V. Majernyk and L. Richterek, Eur. J. Phys. 18, 79 (1997).

    Article  ADS  Google Scholar 

  42. M. Abdel-Aty, S. Furuichi, and S. Nakamura, Quantum Inf. Comput. 2, 272 (2002); M. Abdel-Aty, J. Math. Phys. 44, 1457 (2003).

    Google Scholar 

  43. N. G. de Almeida, P. B. Ramos, R. M. Serra, and M. H. Y. Moussa, J. Opt. B: Quantum Semiclass. Opt. 2, 792 (2000).

    Article  ADS  Google Scholar 

  44. M. Brune, F. Schmidt-Kaler, A. Maali, et al., Phys. Rev. Lett. 78, 1800 (1996).

    Article  ADS  Google Scholar 

  45. S. J. D. Phoenix and P. L. Knight, Ann. Phys. 186, 381 (1988).

    Article  MATH  ADS  Google Scholar 

  46. G. Harel and G. Kurizki, Phys. Rev. A 54, 5410 (1996).

    Article  ADS  Google Scholar 

  47. M. Alexanian, S. Bose, and L. Chow, J. Mod. Opt. 45, 2519 (1998).

    Article  ADS  Google Scholar 

  48. D. P. DiVincenzo, M. Horodecki, D. W. Leung, et al., Phys. Rev. Lett. 92, 067902 (2004).

    Google Scholar 

  49. G. Otfried and L. Maciej, Phys. Rev. A 70, 022316 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Aty, M. Entropy squeezing of a single-cooper-pair box with a generalized geometric state. Laser Phys. 16, 1356–1367 (2006). https://doi.org/10.1134/S1054660X06090106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06090106

Keywords

PACS numbers

Navigation