Skip to main content
Log in

High-order harmonic generation in laser-irradiated homonuclear diatomics: The velocity gauge version of the molecular strong-field approximation

  • Ultrafast Optics and Strong Field Physics
  • Published:
Laser Physics

Abstract

The strong-field process of high-order harmonic generation in laser-irradiated light homonuclear diatomics (H +2 , N2, and O2) is studied compared to atomic counterparts (of nearly identical ionization potential) within the velocity gauge version of conventional strong-field approximation. The applied strong-field approach (we alternatively developed earlier to incorporate rescattering effects beyond the quasiclassical saddle-point approximation) is currently extended to molecular case by means of supplementing the standard linear combination of atomic orbitals and molecular orbitals method. The associated model proved to adequately reproduce a general shape and detailed structure of molecular harmonic spectra, which demonstrate a number of remarkable distinctive differences from respective atomic spectra calculated under the same laser pulses. These revealed differences as well as other generic features (such as the extent of the high-frequency plateau and harmonic emission rates) are found to be strongly dependent on internuclear separation and also very sensitive to the orbital and bonding symmetry of the contributing molecular valence shell. In particular, for some group of harmonics, the emission rates were ascertained to dominate by contribution from inner molecular shells of higher binding energy and different orbital symmetry compared to the outermost molecular orbital normally predominantly contributing. Finally, due to a high suppression in ionization of O2 relative to counterpart atomic Xe, the harmonic spectrum calculated for O2 proved to demonstrate a noticeably longer plateau extending far beyond the harmonic cutoff in the Xe spectrum, in a fairly good accordance with relevant experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hentschel, R. Kienberger, C. Spielmann, et al., Nature 414, 509 (2001); H. C. Kapteyn, M. M. Murnane, and I. P. Christov, Phys. Today, No. 3, 39 (2005).

    Article  ADS  Google Scholar 

  2. C. Spielmann, N. H. Burnett, R. Sartania, et al., Science 278, 661 (1997); C. Spielmann, C. Kan, N. H. Burnett, et al., IEEE J. Sel. Top. Quantum Electron. 4, 249 (1998).

    Article  ADS  Google Scholar 

  3. J. Itatani, J. Levesque, D. Zeidler, et al., Nature 432, 867 (2004).

    Article  ADS  Google Scholar 

  4. M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Prog. Phys. 60, 389 (1997).

    Article  ADS  Google Scholar 

  5. P. Salières, A. L. Huillier, P. Antoine, and M. Lewenstein, Adv. At. Mol. Opt. Phys. 41, 83 (1999).

    Google Scholar 

  6. D. B. Milosevic and F. Ehlotzky, Adv. At. Mol. Opt. Phys. 49, 377 (2003).

    Google Scholar 

  7. C. Lyngå, A. L’Huillier, and C.-G. Wahlström, J. Phys. B 29, 3293 (1996).

    Article  ADS  Google Scholar 

  8. D. G. Lappas and J. P. Marangos, J. Phys. B 33, 4679 (2000).

    Article  ADS  Google Scholar 

  9. R. Velotta, N. Hay, M. B. Mason, et al., Phys. Rev. Lett. 87, 183901 (2001); N. Hay, R. Velotta, M. Lein, et al., Phys. Rev. A 65, 053805 (2002).

  10. R. Kopold, W. Becker, and M. Kleber, Phys. Rev. A 58, 4022 (1998).

    Article  ADS  Google Scholar 

  11. M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight, Phys. Rev. A 66 023 805 (2002); Phys. Rev. Lett. 88, 183 903 (2002); M. Lein, P. P. Corso, J. P. Marangos, and P. L. Knight, Phys. Rev. A 67, 023 819 (2003).

  12. T. Pfeifer, D. Walter, G. Gerber, et al., Phys. Rev. A 70, 013 805 (2004).

  13. B. Shan, X. M. Tong, Z. Zhao, et al., Phys. Rev. A 66, 061 401 (R) (2002).

  14. D. A. Telnov and Shih-I Chu, Phys. Rev. A 71, 013 408 (2005).

  15. T. Kanai, S. Minemoto, and H. Sakai, Nature 435, 470 (2005).

    Article  ADS  Google Scholar 

  16. J. P. Marangos, Nature 435, 435 (2005).

    Article  ADS  Google Scholar 

  17. B. Zimmermann, M. Lein, and J. M. Rost, Phys. Rev. A 71, 033401 (2005).

    Google Scholar 

  18. H. D. Cohen and U. Fano, Phys. Rev. 150, 30 (1966).

    Article  ADS  Google Scholar 

  19. J. Muth-Böhm, A. Becker, and F. H. M. Faisal, Phys. Rev. Lett. 85, 2280 (2000); A. Jaron-Becker, A. Becker, and F. H. M. Faisal, Phys. Rev. A 69, 023410 (2004).

    Article  ADS  Google Scholar 

  20. H. R. Reiss, Prog. Quantum Electron. 16, 1 (1992); H. R. Reiss, Phys. Rev. A 42, 1476 (1990).

    Article  ADS  Google Scholar 

  21. L. V. Keldysh, Zh. Exp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)]; F. Faisal, J. Phys. B 6, L312 (1973); H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

    Google Scholar 

  22. M. Lewenstein, P. Balcou, M. Y. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  23. X. M. Tong, Z. X. Zhao, and C. D. Lin, Phys. Rev. A 66, 033402 (2002).

    Google Scholar 

  24. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

    Google Scholar 

  25. C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, Phys. Rev. A 58, R4271 (1998).

    Article  ADS  Google Scholar 

  26. E. Wells, M. J. DeWitt, and R. R. Jones, Phys. Rev. A 66, 013409 (2002); M. J. DeWitt, E. Wells, and R. R. Jones, Phys. Rev. Lett. 87, 153001 (2001).

    Google Scholar 

  27. Shih-I Chu, Adv. At. Mol. Phys. 21, 197 (1985); Adv. Chem. Phys. 73, 739 (1989); Shih-I Chu and D. A. Telnov, Phys. Rep. 390, 1 (2004).

    Article  Google Scholar 

  28. X. Chu and Shih-I Chu, Phys. Rev. A 63, 023411 (2001); X. Chu and Shih-I Chu, Phys. Rev. A 64, 063404 (2001).

  29. V. I. Usachenko and V. A. Pazdzersky, J. Phys. B 35, 761 (2002).

    Article  ADS  Google Scholar 

  30. V. I. Usachenko, V. A. Pazdzersky, and J. K. McIver, Phys. Rev. A 69, 013406 (2004).

    Google Scholar 

  31. V. I. Usachenko and Shih-I Chu, Phys. Rev. A 71, 063410 (2005).

    Google Scholar 

  32. I. V. Litvinyuk, K. F. Lee, P. W. Dooley, et al., Phys. Rev. Lett. 90, 233003 (2003).

    Google Scholar 

  33. T. K. Kjeldsen and L. B. Madsen, J. Phys. B 37, 2033 (2004); Phys. Rev. A 71, 023411 (2005).

    Article  ADS  Google Scholar 

  34. A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, J. Phys. B 39, R1 (2006).

    Article  Google Scholar 

  35. A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, et al., J. Phys. B 28, 309 (1995).

    Article  ADS  Google Scholar 

  36. M. Yu. Ivanov and P. B. Corkum, Phys. Rev. A 48, 580 (1993).

    Article  ADS  Google Scholar 

  37. T. Zuo, S. Chelkowski, and A. D. Bandrauk, Phys. Rev. A 48, 3837 (1993).

    Article  ADS  Google Scholar 

  38. R. Numico, P. Moreno, L. Plaja, and L. Roso, J. Phys. B 31, 4163 (1998); P. Moreno, L. Plaja, and L. Roso, Laser Phys. 7, 602 (1997).

    Article  ADS  Google Scholar 

  39. A. L’Huillier, K. J. Shafer, and K. C. Kulander, J. Phys. B 24, 3315 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usachenko, V.I., Pyak, P.E. & Chu, SI. High-order harmonic generation in laser-irradiated homonuclear diatomics: The velocity gauge version of the molecular strong-field approximation. Laser Phys. 16, 1326–1344 (2006). https://doi.org/10.1134/S1054660X06090076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06090076

PACS numbers

Navigation