Skip to main content
Log in

Temperature distribution in the bright spot of the optical discharge in an optical fiber

  • Fiber Optics
  • Published:
Laser Physics

Abstract

2D simulation of the optical discharge propagation in an optical fiber is performed. In contrast to the previous works, the temperature dependences of the transfer coefficient are taken into account for the bright-spot plasma. The results are compared with the recently published measurements of the spatial distribution of the bright-spot radiation intensity. Good agreement is obtained for the discharge propagation velocity and the dependence of the bright-spot size on the laser power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kashyap, in Proceedings of the International Conference “Lasers’87” Lake Tahoe, Nevada 1987 (STS, McLean, 1987), pp. 859–866.

    Google Scholar 

  2. D. P. Hand and P. St. J. Russel, Opt. Lett. 13, 767 (1988).

    Article  ADS  Google Scholar 

  3. D. P. Hand and P. St. J. Russel, in Proceedings of the 14th ECOC, 1988, Part 1, pp. 111–114.

  4. Y. Shuto, S. Yanagi, S. Asakava, et al., IEEE J. Quantum Electron. 40, 1113 (2004).

    Article  ADS  Google Scholar 

  5. A. N. Tkachev and S. I. Yakovlenko, Quantum Electron. 34, 761 (2004).

    Article  Google Scholar 

  6. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

    Google Scholar 

  7. S. I. Yakovlenko, Quantum Electron. 34, 765 (2004).

    Article  Google Scholar 

  8. S. I. Yakovlenko, Quantum Electron. 34, 787 (2004).

    Article  Google Scholar 

  9. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(2), 94 (2005) [Tech. Phys. 50, 232 (2005)].

    Google Scholar 

  10. R. I. Golyatina and S. I. Yakovlenko, Quantum Electron. 35, 422 (2005).

    Article  Google Scholar 

  11. S. Todoroki, “In-Situ Observation of Fiber-Fuse Propagation,” in Proceedins of the 30th European Conference Optical Communication Post-Deadline Papers, Kista Photonics Research Center, Stockholm, Sweden, 2004, pp. 32–33.

  12. L. A. Bufetov, A. A. Frolov, E. M. Dianov, et al., “Dynamics of Fiber Fuse Propagation,” OFC/N FOEC 2005 Technical Digest, Anaheim (2005).

  13. S. Todoroki “Ultrahigh-Speed Videography of Fiber Fuse Propagation: A Tool for Studying Void Formation,” ICONO/LAT 2005 Technical Digest on CD-ROM (St. Petersburg, Russia, 2005).

    Google Scholar 

  14. S. Todoroki, “Origin of Periodic Void Formation During Fiber Fuse,” Opt. Express 13(17), 6381–6389 (2005).

    Article  ADS  Google Scholar 

  15. S. I. Yakovlenko, Radiation-Collisional Phenomena (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  16. V. Kas’yanov and A. Starostin, Zh. Eksp. Teor. Fiz. 48, 295 (1965) [Sov. Phys. JETP 21, 193 (1965)].

    Google Scholar 

  17. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Nauka, Moscow, 1974; Consultants Bureau, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumarin, E.D., Yakovlenko, S.I. Temperature distribution in the bright spot of the optical discharge in an optical fiber. Laser Phys. 16, 1235–1241 (2006). https://doi.org/10.1134/S1054660X06080123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06080123

PACS numbers

Navigation