Skip to main content
Log in

Confronting the Hartman effect with data from frustrated total internal reflection (FTIR)

  • Biophotonics
  • Published:
Laser Physics

Abstract

Over 40 years ago, Hartman noted that the tunneling time τ of a particle through a barrier becomes independent of width for thick barriers. Lately, the Hartman effect has been seen as a support for superluminal tunneling time. By interpreting the reflection and transmission amplitudes in terms of multiple reflection series, we show that τ is linear in barrier width for thin barriers and may be associated with actual traversal time; for thick barriers, τ saturates to the Hartman value because of the suppression of all but the first term of the series due to the smallness of the tunneling factor. For large widths, τ cannot be identified with the propagation time but may be associated with a time to penetrate to a characteristic depth into the barrier, which is independent of width. We discuss data from frustrated internal reflection experiments, which support this view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. MacColl, Phys. Rev. 40, 621 (1932).

    Article  MATH  ADS  Google Scholar 

  2. T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).

    Article  ADS  Google Scholar 

  3. R. Landauer and Th. Martin, Rev. Mod. Phys. 66, 217 (1994); E. H. Hauge and J. A. Stövneng, Rev. Mod. Phys. 61, 917 (1989).

    Article  ADS  Google Scholar 

  4. G. Nimtz, Prog. Quantum Electron. 27, 417 (2003).

    Article  ADS  Google Scholar 

  5. V. Delgado and J. A. Muga, Phys. Rev. A 56, 3425 (1997); M. Buttiker, in Time in Quantum Mechanics, Ed. by G. Muga, R. Sala Mayato, and I. L. Egusquiza (Springer, Berlin, 2002).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. S. Olkhovsky, E. Recami, and J. Jakiel, Phys. Rep. 398, 133 (2004); D. Sokolowski and Liu, Phys. Rev. A 63, 012 109 (2000); M. Buttiker, Phys. Rev. B 27, 6178 (1983).

    Article  ADS  Google Scholar 

  7. S. Longhi et al., Phys. Rev. E 64, 055 602 (2001); Ch. Spielmann et al., Phys. Rev. Lett. 73, 2308 (1994).

    Google Scholar 

  8. Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).

    Article  ADS  Google Scholar 

  9. A. Dogariu, A. Kuzmich, and L. H. Wang, Phys. Rev. A 63, 053806 (2001); G. Nimtz and W. Heitmann, Prog. Quantum Electron. 21, 81 (1997).

  10. H. Winful, Phys. Rev. Lett. 91, 260401 (2003); 90, 023901 (2003).

    Google Scholar 

  11. B. H. Bransden and J. C. Joachain, Introduction to Quantum Mechanics (Longman Scientifical and Technical, London, 1989), p. 152.

    Google Scholar 

  12. J. C. Martinez and E. Polatdemir, Phys. Scr. 68, 108 (2003); F. T. Smith, Phys. Rev. 118, 349 (1960).

    Article  ADS  MATH  Google Scholar 

  13. Th. Martin and R. Laundauer, Phys. Rev. A 45, 2611 (1992); A. M. Steinberg and R. Chiao, Phys. Rev. A 49, 3289 (1994).

    Article  ADS  Google Scholar 

  14. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, Heidelberg, 1990); A. Siegman, Lasers (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  15. B. R. Horowitz and T. Tamir, J. Opt. Soc. Am. 61, 586 (1971).

    Article  ADS  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  17. A. K. Ghatak et al., Opt. Commun. 56, 313 (1986).

    Article  ADS  Google Scholar 

  18. N. K. V. Lotsch, Optik (Stuttgart) 26, 112, 181, 299, 553 (1970).

    Google Scholar 

  19. A. Haibel, G. Nimitz, and A. Stahlhofen, Phys. Rev. E 63, 047601 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, J.C. Confronting the Hartman effect with data from frustrated total internal reflection (FTIR). Laser Phys. 16, 1123–1127 (2006). https://doi.org/10.1134/S1054660X06070176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06070176

PACS numbers

Navigation