Skip to main content
Log in

Measuring the photon distribution with ON/OFF photodetectors

  • Quantum Information and Quantum Computation
  • Published:
Laser Physics

Abstract

Reconstruction of photon statistics of optical states provides fundamental information on the nature of any optical field and helps with various relevant applications. Nevertheless, no detector that can reliably discriminate the number of incident photons is available. On the other hand, the alternative of reconstructing the density matrix by quantum tomography leads to various technical difficulties that are particularly severe in the pulsed regime (where mode matching between a signal and local oscillator is very challenging). Even if on/off detectors, as usual avalanche photodiodes operating in Geiger mode, seem useless as photo-counters, it was recently shown how reconstruction of photon statistics is possible by considering a variable quantum efficiency. Here we present experimental reconstructions of photon number distributions of both continuous-wave and pulsed light beams in a scheme based on on/off avalanche photodetection assisted by maximum-likelihood estimation. Reconstructions of the distribution for both semiclassical and quantum states of light (as single photon, coherent, pseudothermal, and multithermal states) are reported for single-mode and multimode beams. The stability and good accuracy obtained in the reconstruction of these states clearly demonstrate the interesting potentialities of this simple technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Genovese, Phys. Rep. 413–6, 319 (2005).

    ADS  MathSciNet  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000); D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000).

    Google Scholar 

  3. G. Zambra, M. Bondani, A. S. Spinelli, and A. Andreoni, Rev. Sci. Instrum. 75, 2762 (2004).

    Article  ADS  Google Scholar 

  4. E. Hergert, Single Photon Detector Workshop (NIST, Gaithersburg, 2003).

    Google Scholar 

  5. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 902 (1999); A. Peacock, P. Verhoeve, N. Rando, Nature 381, 135 (1996).

    ADS  Google Scholar 

  6. G. Di Giuseppe, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum Information and Computation,” Proc. SPIE 5105, 39 (2003).

    ADS  Google Scholar 

  7. H. Cramer, Mathematical Methods of Statistics (Princeton Univ. Press, Princeton, 1946).

    Google Scholar 

  8. M. Bondani, et al., quant-ph/0502060; Phys. Rev. Lett. (in press).

  9. M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G. Raymer, Phys. Rev. A 52, R924 (1995); Y. Zhang, K. Kasai, and M. Watanabe, Opt. Lett. 27, 1244 (2002).

    Article  ADS  Google Scholar 

  10. M. Raymer and M. Beck, Quantum States Estimation, Ed. by M. G. A. Paris and J. Řeháćek (Springer, Heidelberg, 2004).

    Google Scholar 

  11. F. Zappa, A. L. Lacaita, S. D. Cova, and P. Lovati, Opt. Eng. 35, 938 (1996); D. Achilles, C. Silbergorn, C. Śliwa, K. Banaszek, and I. A. Walmsley, Opt. Lett. 28, 2387 (2003).

    Article  ADS  Google Scholar 

  12. D. Mogilevtsev, Opt. Comm. 156, 307 (1998); Acta Phys. Slov. 49, 743 (1999).

    ADS  Google Scholar 

  13. A. R. Rossi, S. Olivares, and M. G. A. Paris, Phys. Rev. 70, 055801 (2004).

    Google Scholar 

  14. A. R. Rossi and M. G. A. Paris, Eur. Phys. J. D 32, 223 (2005).

    Article  ADS  Google Scholar 

  15. J. Řeháćek, Z. Hradil, O. Haderka, et al., Phys. Rev. A 67, 061801(R) (2003); O. Haderka, M. Hamar, and J. Perina, Eur. Phys. J. D 28, (2004).

  16. K. Banaszek and I. A. Walmsley, Opt. Lett. 28, 52 (2003).

    ADS  Google Scholar 

  17. A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R. Stat. Soc. B 39, 1 (1977); Y. Vardi and D. Lee, J. R. Stat. Soc. B 55, 569 (1993); R. A. Boyles, J. R. Stat. Soc. B 45, 47 (1983).

    Google Scholar 

  18. G. Brida, M. Genovese, and C. Novero, J. Mod. Opt. 47, 2099 (2000); G. Brida, M. Genovese and M. Gramegna, Laser Phys. (in press).

    ADS  MathSciNet  Google Scholar 

  19. F. Paleari, A. Andreoni. G. Zambra, and M. Bondani, Opt. Express 13, 2816 (2004).

    ADS  Google Scholar 

  20. G. F. Knoll, Radiation, Detection and Measurement (John Wiley and Sons, New York, 1989).

    Google Scholar 

  21. R. Loudon, The Quantum Theory of Light (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  22. G. Brida, et al., Phys. Lett. A 268, 12 (2000); Phys. Lett. 299, 121 (2002); Phys. Rev. A 70, 032332 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. M. Genovese, et al., Opt. Spectrosc. 99, 185 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genovese, M., Gramegna, M., Brida, G. et al. Measuring the photon distribution with ON/OFF photodetectors. Laser Phys. 16, 385–392 (2006). https://doi.org/10.1134/S1054660X06020320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06020320

Keywords

Navigation