Skip to main content
Log in

Entanglement production with multimode Bose-einstein condensates in optical lattices

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

Deep optical lattices are considered, in each site of which there are many Bose condensed atoms. By the resonant modulation of trapping potentials, it is possible to transfer a macroscopic portion of atoms to the collective nonlinear states corresponding to topological coherent modes. Entanglement can be generated between these modes. By varying the resonant modulating field, it is possible to effectively regulate entanglement production in this multimode multitrap system of Bose condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Raimond, M. Bruce, and S, Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  Google Scholar 

  2. V. Vedral, Rev. Mod. Phys. 74, 197 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Galindo and M. A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Keyl, Phys. Rep. 369, 431 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76, 1037 (2004).

    ADS  Google Scholar 

  6. P. W. Gourteille, V. S. Bagnato, and V. I. Yukalov, Laser Phys. 11, 659 (2001).

    Google Scholar 

  7. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003).

    Google Scholar 

  8. J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Bongs and K. Sengstock, Rep. Prog. Phys. 67, 907 (2004).

    Article  ADS  Google Scholar 

  10. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Phys. Rev. A 56, 4845 (1997).

    ADS  Google Scholar 

  11. K. P. Marzlin and W. Zhang, Phys. Rev. A 57, 4761 (1998).

    ADS  Google Scholar 

  12. E. A. Ostrovskaya, Y. S. Kivshar, M. Lisak, et al., Phys. Rev. A 61, 031 601 (2000).

  13. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 10, 26 (2000).

    Google Scholar 

  14. J. Williams, R. Walser, J. Cooper, et al., Phys. Rev. A 61, 033 612 (2000).

  15. Y. S. Kivshar, T. J. Alexander, and S. K. Turitsyn, Phys. Lett. A 278, 225 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 11, 455 (2001).

    Google Scholar 

  17. R. D’Agosta, B. A. Malomed, and C. Presilla, Laser Phys. 12, 37 (2002).

    Google Scholar 

  18. R. D’Agosta and C. Presilla, Phys. Rev. A 65, 043 609 (2002).

  19. N. P. Proukakis and L. Lambropoulos, Eur. Phys. J. D 19, 355 (2002).

    ADS  Google Scholar 

  20. V. I. Yukalov and E. P. Yukalova, J. Phys. A 35, 8603 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  21. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 12, 231 (2002).

    Google Scholar 

  22. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 12, 1325 (2002).

    Google Scholar 

  23. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Phys. Rev. A 66, 025 602 (2002).

    Google Scholar 

  24. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Phys. Rev. A 66, 043 602 (2002).

    Google Scholar 

  25. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 13, 551 (2003).

    Google Scholar 

  26. V. I. Yukalov, E. P. Yukalova, and V. S. Bagnato, Laser Phys. 13, 861 (2003).

    Google Scholar 

  27. V. I. Yukalov, E. P. Marzlin, and E. P. Yukalova, Laser Phys. 14, 565 (2004).

    Google Scholar 

  28. V. I. Yukalov, K. P. Marzlin, and E. P. Yukalova, Phys. Rev. A 69, 023 620 (2004).

    Google Scholar 

  29. S. K. Adhikari, Phys. Rev. A 69, 063 613 (2004).

    Google Scholar 

  30. V. I. Yukalov and E. P. Yukalova, J. Low Temp. Phys. 138, 657 (2005).

    Article  Google Scholar 

  31. V. I. Yukalov, K. P. Marzlin, E. P. Yukalova, and V. S. Bagnato, Am. Inst. Phys. Conf. Proc. 770, 218 (2005).

    ADS  Google Scholar 

  32. V. I. Yukalov, Statistical Green’s Functions (Queen’s Univ., Kingston, 1998).

    Google Scholar 

  33. G. Cennini, C. Geckeler, G. Ritt, and W. Weitz, cond-mat/0505786.

  34. M. Kohl, T. Stoferle, H. Moritz, et al., cond-mat/0406397.

  35. C. Schori, T. Stöferle, H. Moritz, et al., cond-mat/0408449.

  36. A. M. Basharov, Opt. Spectrosc. 90, 496 (2001).

    Google Scholar 

  37. W. Weitz, G. Cennini, G. Ritt, and C. Geckeler, Phys. Rev. A 70, 043 414 (2004).

  38. O. Mandel, M. Greiner, A. Widera, et al., Phys. Rev. Lett. 91, 010 407 (2003).

  39. F. Gerbier, A. Widera, S. Föiling, et al., cond-mat/0503452.

  40. V. I. Yukalov, Phys. Rev. Lett. 90, 167 905 (2003).

    Google Scholar 

  41. V. I. Yukalov, Phys. Rev. A 68, 022 109 (2003).

    Google Scholar 

  42. P. D. Drummond, J. F. Corney, X. J. Liu, and H. Hu, cond-mat/0504742.

  43. V. I. Yukalov, Laser Phys. Lett. 1, 435 (2004).

    Google Scholar 

  44. M. M. Parish, B. Mikhaila, E. M. Timmermans, K. B. Blagoev, and P. B. Littlewood, Phys. Rev. B 71, 064 513 (2005).

    Google Scholar 

  45. V. K. Ignatovich, J. Phys. Soc. Jpn. 65, 7 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukalov, V.I., Yukalova, E.P. Entanglement production with multimode Bose-einstein condensates in optical lattices. Laser Phys. 16, 354–359 (2006). https://doi.org/10.1134/S1054660X06020265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06020265

Keywords

Navigation