Skip to main content
Log in

Nonequilibrium dynamics of Tonks-Girardeau gases on optical lattices

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

We summarize in the present work exact results obtained for Tonks-Girardeau gases on one-dimensional optical lattices both for the ground state and nonequilibrium dynamics. On the theoretical side, impenetrable bosons offer the opportunity to study strongly interacting systems in one-dimensional lattices exactly, by means of the Jordan-Wigner transformation, and hence contribute to the topic of strong correlations at the center of interest in both condensed matter physics and quantum gases. This motivation is further enhanced by recent experimental realizations of such systems with ultracold atoms. After having shown their universal properties in equilibrium, we concentrate on their nonequilibrium dynamics. It will be shown that, starting from a pure Fock state, quasi-long-range correlations develop dynamically and lead to the formation of quasicondensates with a momentum determined by the underlying lattice. We expect this effect to be relevant for atom lasers with full control of the wavelength. Then, we will show that the free evolution of an initially confined Tonks-Girardeau gas leads to a momentum distribution that approaches at long times that of the equivalent fermionic system, giving rise to a bosonic gas with a Fermi edge, and hence a fermionization that can only be obtained out of equilibrium. Remarkably, although the momentum distribution function of the Tonks-Girardeau gas becomes equal to the one of the fermions, no loss in coherence is observed in the system, as reflected by a large occupation of eigenstates of the one-particle density matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Girardeau, J. Math. Phys. 1, 516 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Lenard, J. Math. Phys. 5, 930 (1964).

    Article  MathSciNet  Google Scholar 

  3. H. G. Vaidya and C. A. Tracy, Phys. Rev. Lett. 42, 3 (1979).

    Article  ADS  Google Scholar 

  4. M. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033 601 (2001).

    Google Scholar 

  5. T. Papenbrock, Phys. Rev. A 67, 041 601(R) (2003).

  6. P. J. Forrester, N. Frankel, T. M. Garoni, and N. S. Witte, Phys. Rev. A 67, 043 607 (2003).

    Google Scholar 

  7. E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 88, 170409 (2002).

    Article  ADS  Google Scholar 

  8. A. Minguzzi, P. Vignolo, and M. P. Tosi, Phys. Lett. A 294, 222 (2002).

    Article  ADS  Google Scholar 

  9. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).

    Article  ADS  Google Scholar 

  10. B. Paredes, et al., Nature 429, 277 (2004).

    Article  ADS  Google Scholar 

  11. T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).

    Article  ADS  Google Scholar 

  12. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031 603(R) (2004).

  13. M. Rigol and A. Muramatsu, Phys. Rev. A 72, 013 604 (2005).

  14. P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

    Google Scholar 

  15. M. Rigol and A. Muramatsu, Phys. Rev. Lett. 93, 230404 (2004).

    Google Scholar 

  16. M. Rigol and A. Muramatsu, Phys. Rev. Lett. 94, 240403 (2005).

    Google Scholar 

  17. A. Muramatsu, in Quantum Monte Carlo Methods in Physics and Chemistry, Ed. by M. P. Nightingale and C. J. Umrigar (Kluwer, Dordrecht, 1999).

    Google Scholar 

  18. N. Kitanine, J. Maillet, N. A. Slanov, and V. Terras, Nucl. Phys. B 642, 433 (2002).

    Article  ADS  Google Scholar 

  19. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 043 627 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigol, M., Muramatsu, A. Nonequilibrium dynamics of Tonks-Girardeau gases on optical lattices. Laser Phys. 16, 348–353 (2006). https://doi.org/10.1134/S1054660X06020253

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06020253

Keywords

Navigation