Skip to main content
Log in

Advances in photonic crystals with MEMS and with semiconductor quantum dots

  • Modern Trends in Laser Physics
  • Published:
Laser Physics

Abstract

We discuss photonic crystals (PCs) with a microelectromechanical system (MEMS) and semiconductor quantum dots (QDs) as novel classes of PC devices. Integration of MEMS structures into PC devices enables one to realize several kinds of functional devices, such as modulators, switches, and tunable filters for highly integrated photonic circuits. We describe the basic concept of MEMS-integrated PC devices and show numerical and experimental demonstrations of MEMS-integrated functional PC devices. On the other hand, QDs are promising candidates for active media in PC devices. Spontaneous emission control of QD emission in PC nanocavities is especially important for novel optoelectronic devices and quantum information devices. In PC nanocavities, the interaction between QD excitons and photons is enhanced dramatically. The control of spontaneous emission spectrum and the enhancement of the luminescence intensity of InAs QDs by PC nanocavities are demonstrated at telecommunication wavelengths. The Purcell effect for ensemble and single QDs in PC nanocavities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  2. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  ADS  Google Scholar 

  3. S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).

    Article  ADS  Google Scholar 

  4. S. J. McNab, N. Moll, and Y. A. Vlasov, Opt. Express 11, 2927 (2003).

    ADS  Google Scholar 

  5. Y. Sugimoto, Y. Tanaka, N. Ikeda, et al., Opt. Express 12, 1090 (2004).

    Article  ADS  Google Scholar 

  6. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).

    Google Scholar 

  7. S. Iwamoto and Y. Arakawa, IEICE Trans. Electron. E87-C, 343 (2004).

    Google Scholar 

  8. S. Iwamoto, S. Ishida, Y. Arakawa, et al., Appl. Phys. Lett. (in press).

  9. O. Painter, R. K. Lee, A. Scherer, et al., Science 284, 1819 (1999).

    Article  Google Scholar 

  10. H. Y. Ryu, S. H. Kim, H. G. Park, et al., Appl. Phys. Lett. 80, 3476 (2002).

    ADS  Google Scholar 

  11. T. Yoshie, O. B. Shchekin, H. Chen, et al., Electron. Lett. 38, 967 (2002).

    Article  Google Scholar 

  12. E. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  13. S. Iwamoto, J. Tatebayashi, T. Fukuda, et al., Jpn. J. Appl. Phys. 44, 2579 (2005).

    Article  Google Scholar 

  14. D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, Appl. Phys. Lett. 82, 3176 (2003).

    Article  ADS  Google Scholar 

  15. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, Opt. Express 12, 588 (2004).

    Article  ADS  Google Scholar 

  16. M. Soljacic and J. D. Joannopoulos, Nature Mater. 3, 211 (2004).

    Google Scholar 

  17. M. M. De Lima, Jr., R. Hey, and P. V. Santos, Appl. Phys. Lett. 83, 2997 (2003).

    ADS  Google Scholar 

  18. B. Maune, M. Loncar, J. Witzens, et al., Appl. Phys. Lett. 85, 360 (2004).

    Article  ADS  Google Scholar 

  19. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

    Google Scholar 

  20. J. P. Bernger, J. Comput. Phys. 114, 185 (1994).

    ADS  MathSciNet  Google Scholar 

  21. S. Iwamoto, H. Yamada, A. Gomyo, et al., Proc. SPIE 5360, 165 (2004).

    ADS  Google Scholar 

  22. W. Suh, N. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).

    Article  ADS  Google Scholar 

  23. D. Labilloy, H. Benisty, C. Weisbuch, et al., Phys. Rev. B 59, 1649 (1999).

    Article  ADS  Google Scholar 

  24. T. Yoshie, A. Scherer, H. Chen, et al., Appl. Phys. Lett. 79, 114 (2001).

    ADS  Google Scholar 

  25. J. Tatebayashi, S. Iwamoto, S. Kako, et al., Jpn. J. Appl. Phys. 42, 2391 (2003).

    Google Scholar 

  26. P. Michler, A. Kiraz, C. Becher, et al., Science 290, 2282 (2000).

    Article  ADS  Google Scholar 

  27. V. Zwiller, H. Blom, P. Jonsson, et al., Appl. Phys. Lett. 78, 2476 (2001).

    Article  ADS  Google Scholar 

  28. E. Moreau, I. Robert, J. M. Gerard, et al., Appl. Phys. Lett. 79, 2865 (2001).

    Article  ADS  Google Scholar 

  29. M. Pelton, C. Santori, J. Vuckovic, et al., Phys. Rev. Lett. 89, 233 062 (2002).

  30. K. Takemoto, Y. Sakuma, S. Hirose, et al., Jpn. J. Appl. Phys. 43, L993 (2004).

    Google Scholar 

  31. T. Miyazawa, K. Takemoto, Y. Sakuma, et al., Jpn. J. Appl. Phys. 44, L620, 2005.

    Article  Google Scholar 

  32. J. Tatebayashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 78, 3469 (2001).

    Article  ADS  Google Scholar 

  33. D. Dalacu, D. Poitras, J. Lefebvre, et al., Appl. Phys. Lett. 84, 3235 (2004).

    Article  ADS  Google Scholar 

  34. T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, et al., Phys. Rev. B 66, 041 303 (2002).

    Google Scholar 

  35. T. Yoshie, A. Scherer, J. Hendrickson, et al., Nature 432, 200 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, S., Arakawa, Y. Advances in photonic crystals with MEMS and with semiconductor quantum dots. Laser Phys. 16, 223–231 (2006). https://doi.org/10.1134/S1054660X06020034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06020034

Keywords

Navigation