Skip to main content
Log in

Model of Static Destruction of a Copper Conductor during Current Overload

  • EXPERIMENTAL MECHANICS, DIAGNOSTICS, AND TESTING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical studies of the formation of a crack in a copper conductor under the influence of current overload are presented. The conductor was examined using a JSM-6390L scanning electron microscope. A refined mathematical model of the static stress–strain state and destruction of a copper rod under conditions of inelastic bending at temperatures up to 700°C has been obtained. The limiting values of the bending moment and curvature of the copper conductor, causing its rupture after the formation of a crack, have been determined. The calculation algorithm has been brought to the final analytical dependences, allowing them to be used when conducting forensic fire-technical examination or designing electrical wiring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Roby, R.J. and McAllister, J., Forensic Investigation Techniques for Inspecting Electrical Conductors Involved in Fire: Final Technical Report for Award No. 239052, Columbia: Combustion Science & Engineering, 2012.

    Google Scholar 

  2. Babrauskas, V., Arc mapping: A critical review, Fire Technol., 2018, vol. 54, no. 3, pp. 749–780. https://doi.org/10.1007/s10694-018-0711-5

    Article  Google Scholar 

  3. Xiao, K.C. et al., Investigation of evolution process and molten marks characteristics of overcurrent fault, J. Xian Univ. Sci. Technol., 2020, vol. 40, p. 393.

    Google Scholar 

  4. Mokryak, A.Yu., Determination of the origin of vitrification of copper conductors and brass current-conducting items at fire expertise at power supply facilities, Cand. Sci. (Eng.) Dissertation, St. Petersburg: Acad. State Fire Service of the Ministry of Emergency Situations of Russia, 2018.

  5. Finkel’, V.M., Golovin, Yu.A., and Sletkov, A.A., On possibility of decelrating rapid cracks by current pulses, Dokl. Akad. Nauk SSSR, 1976, vol. 227, no. 4, p. 848.

    Google Scholar 

  6. Golovin, Yu.I., Finkel’, V.M., Sletkov, A.A., and Shibkov, A.A., Dynamics of material fracture at crack tip under action of strong electromagnetic field, Fiz. Khim. Obrab. Mater., 1978, no. 2, p. 40.

  7. Emel’yanov, O.A., Local fracture of thin metallic films during electromagnetic loading, Tech. Phys., 2008, vol. 53, no. 7, pp. 866–874. https://doi.org/10.1134/S1063784208070098

    Article  Google Scholar 

  8. Krivosheev, S.I., Adamian, Yu.E., Alekseev, D.I., Magazinov, S.G., Chernenkaya, L.V., and Titkov, V.V., The impact of local current density increase on conductor destruction, J. Phys.: Conf. Ser., 2019, vol. 1147, no. 1, p. 012033. https://doi.org/10.1088/1742-6596/1147/1/012033

  9. Lukash, P.A., Osnovy nelineinoi stroitel’noi mekhaniki (Foundations of the Nonlinear Structural Mechanics), Moscow: Stroiizdat, 1978.

  10. Nedobitkov, A.I. and Abdeev, B.M., On physical basis of local current overload in vehicle electric mains, Pozharovzryvobezopasnost’, 2019, vol. 28, no. 6, pp. 18–28. https://doi.org/10.18322/pvb.2019.28.06.18-28

    Article  Google Scholar 

  11. Nedobitkov, A.I. and Abdeyev, B.M., Inelastic stretching of a single-wire copper conductor under unlimited local strains at positive temperature, Tech. Phys., 2021, vol. 66, no. 7, pp. 902–908. https://doi.org/10.1134/S1063784221060128

    Article  Google Scholar 

  12. Timoshenko, S.P. and Gere, J.M., Mechanics of Materials, Boston: PWS, 1997.

    Google Scholar 

  13. Birger, I.A. and Mavlyutov, R.R., Soprotivlenie materialov. Uchebnoe posobie (Strength of Materials: Textbook), Moscow: Nauka, 1986.

  14. Filin, A.P., Prikladnaya mekhanika tverdogo deformiruemogo tela. Soprotivlenie materialov s elementami teorii sploshnykh sred i stroitel’noi mekhaniki (Applied Solid Mechanics: Strength of Materials with Elements of the Continuum and Structural Mechanics), Moscow: Nauka, 1975.

  15. Vardanyan, G.S., Andreev, V.I., Atarov, N.M., and Gorshkov, A.A., Soprotivlenie materialov s osnovami teorii uprugosti i plastichnosti. Uchebnoe posobie (Strength of Materials with Elements of Elasticity and Plasticity Theory: Textbook), Varanyan, G.S., Ed., Moscow: Izd-vo ASV, 1995.

    Google Scholar 

  16. Popov, E.P., Teoriya i raschet gibkikh uprugikh sterzhnei (Theory and Analysis of Flexible Elastic Rods), Moscow: Nauka, 1986.

  17. Feodos’ev, V.I., Soprotivlenie materialov (Strength of Materials), Moscow: Nauka, 1974.

  18. Nikolaev, A.K. and Kostin, S.A., Med’ i zharoprochnye mednye splavy (Copper and Heat-Resistant Copper Alloys), Moscow: DPK Press, 2012.

  19. Serensen, S.V., Kogaev, V.P., and Shneiderovich, R.M., Nesushchaya sposobnost’ i raschety detalei mashin na prochnost’. Rukovodstvo i sprav. posobie (Load-Bearing Capacity and Strength Analysis of Machine Elements: Guidelines and Reference Book), Serensen, S.V., Ed., Moscow: Mashinostroenie, 1975.

    Google Scholar 

  20. Sakalo, V.I., Guseva, Yu.S., and Inshakova, T.V., The effect of heat treatment temperature on the mechanical properties of copper M1, Vestn. Bryanskogo Gos. Tekh. Univ., 2015, no. 3, pp. 94–97.

  21. Bronshtein, I.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov (Reference Book on Mathematics for Engineers and Students of Technical Universities), Moscow: Nauka, 1986, 13th ed.

  22. Smolyanskii, M.L., Tablitsy neopredelennykh integralov (Tables of Indefinite Integrals), Moscow: Nauka, 1965.

  23. Pravila ustroistva elektroustanovok. Vse deistvuyushchie razdely shestogo i sed’mogo izdanii s izmeneniyami i dopolneniyami (Rules of Designing Electric Facilities: All Current Sections of the Sixth and Seventh Editions with Changes and Additions), Novosibirsk: Normatika, 2018.

  24. Gulyaev, I.V., Vasenin, A.B., Stepanov, S.E., Ippolitov, V.A., and Kryukov, O.V., Thermal vision survey of curved distribution bus lines devices of transformer substations, Avtom. IT Energetike, 2022, no. 6, pp. 48–57.

  25. Li, Ya., Sun, Ye., Gao, Ya., Sun, J., Lyu, H.-F., Yu, T., Yang, S., and Wang, Yo., Analysis of overload induced arc formation and beads characteristics in a residential electrical cable, Fire Saf. J., 2022, vol. 131, p. 103626. https://doi.org/10.1016/j.firesaf.2022.103626

  26. Nedobitkov, A.I., Fractography of car electric circuit copper conductor fractures, Pozharovzryvobezopasnost’, 2016, vol. 25, no. 2, pp. 21–27. https://doi.org/10.18322/pvb.2016.25.02.21-27

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors made an equivalent contribution to the publication.

Corresponding author

Correspondence to A. I. Nedobitkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedobitkov, A.I., Abdeyev, B.M. Model of Static Destruction of a Copper Conductor during Current Overload. J. Mach. Manuf. Reliab. 53, 96–105 (2024). https://doi.org/10.1134/S1052618824010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1052618824010084

Keywords:

Navigation