Skip to main content
Log in

Modern Technological Processes of Shaping in the Treatment of the Flowing Part of GTE Blades

  • NEW TECHNOLOGIES IN MECHANICAL ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The analysis and relevance of the application of innovative technological processes in the treatment of gas turbine engine blades is considered. The technological processes of producing such blades play a decisive role in providing the reliability, performance, service life, and operation time of gas turbine engines in general. An analysis of the technological processes making it possible to increase the productivity and quality of machined blades is presented. The advantages and disadvantages of some technologies have been compared. Particular attention is paid to the technological processes of restoring worn blades for gas turbine engines. The development of intelligent process control systems in manufacturing gas turbine engine blades is one of the main directions for improving technological processes at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Demin, F.I., Pronichev, N.D., and Shitarev, I.L., Tekhnologiya izgotovleniya osnovnykh detalei gazoturbinnykh dvigatelei (Technology for Manufacturing Main Elements of Gas-Turbine Engines), Moscow: Mashinostroenie, 2002, 2nd ed.

  2. Afonin, V.L., Gavrilina, L.V., Ibragimov, A.R., Kondrat’ev, I.M., Morozov, S.V., Rakov, D.L., Smolentsev, A.N., Sukhorukov, R.Yu., and Shitov, A.M., Issledovaniya i razrabotka innovatsionnykh tekhnologicheskikh protsessov i intellektual’nykh sistem upravleniya dlya izgotovleniya detalei gazoturbinnykh dvigatelei (GTD) (Research and Development of Innovative Technological Processes and Smart Control Systems for Preparing Elements of Gas-Turbine Engines), Moscow: Inst. Mashinovedeniya Ross. Akad. Nauk, 2019.

  3. Klimov, V.G., Structure and properties of gas-turbine engine blades recovered by laser welding deposit from superalloys, Cand. Sci. (Eng.) Dissertation, Samara: Samarsk. Gos. Tekh. Univ., 2019.

  4. Tikhonov, N.T., Musatkin, N.F., and Matveev, V.N., Teoriya lopatochnykh mashin aviatsionnykh gazoturbinnykh dvigatelei (Theory of blade machines of aviation gas-turbine engines), Samara: Samarsk. Gos. Aerokosm. Univ., 2001.

  5. Ospennikova, O.G., Lukin, V.I., Afanasev-Khodykin, A.N., and Galushka, I.A., The manufacture of the blisk rotor design made from bimetallic combination of materials (review), Tr. VIAM, 2018, no. 10, pp. 10–16. https://doi.org/10.18577/2307-6046-2018-0-10-10-16

  6. GOST R (State Standard) 58998-2020: Blades of aviation axial compressors and turbines. Terms and definitions, 2020.

  7. Grilikhes, S.Ya., Elektrokhimicheskoe i khimicheskoe polirovanie. Teoriya i praktika. Vliyanie na svoistva metallov (Electrochemical and Chemical Polishing: Theory and Practice: Influence on Metal Properties), Leningrad: Mashinostroenie, 1987.

  8. Qu, N.S. and Xu, Z.Y., Improving machining accuracy of electrochemical machining blade by optimization of cathode feeding directions, Int. J. Adv. Manuf. Technol., 2013, vol. 68, p. 1565. https://doi.org/10.1007/s00170-013-4943-8

    Article  Google Scholar 

  9. Mingazhev, A.D. and Krioni, N.K., Approach to electropolishing of metallic workpieces, RF Patent 2752835, 2021.

  10. Sammatov, I.K., Tastiev, P.R., and Karimov, N.R., Technology and equipment for band dry electric polishing of gas-turbine engines, Materialy XV Vserossiiskoi molodezhnoi nauchnoi konferentsii (Proc. 15th All-Russian Youth Sci. Conf.), Ufa: 2021, vol. 2, p. 214.

  11. Kondrat’ev, I. and Rakov, D., Advanced morphological approach to finding novel solutions for automated finishing of GTE blades, J. Phys.: Conf. Ser., 2019, vol. 1260, no. 3, p. 032021. https://doi.org/10.1088/1742-6596/1260/3/032021

    Article  Google Scholar 

  12. Yan, B., Hao, Ya., Zhu, L., and Liu, C., Towards high milling accuracy of turbine blades: A review, Mech. Syst. Signal Process., 2022, vol. 170, p. 108727. https://doi.org/10.1016/j.ymssp.2021.108727

    Article  Google Scholar 

  13. Harik, R.F., Gong, H., and Bernard, A., 5-axis flank milling: A state-of-the-art review, Comput.-Aided Des., 2013, vol. 45, no. 3, pp. 796–808. https://doi.org/10.1016/j.cad.2012.08.004

    Article  Google Scholar 

  14. Warkentin, A., Ismail, F., and Bedi, S., Intersection approach to multi-point machining of sculptured surfaces, Comput. Aided Geometric Des., 1998, vol. 15, no. 6, pp. 567–584. https://doi.org/10.1016/s0167-8396(97)00039-3

    Article  MathSciNet  Google Scholar 

  15. Killer, F. and Scherer, J., Method and apparatus for machining a blank from all directions in a machine tool or milling machine, US Patent 0186045, 2005.

  16. Bikmukhametov, T.F. and Akmaev, O.K., Improving the precision of processing of the profile of low-stiffness gas-turbine engine blades, Sovremennye tendentsii v tekhnologiyakh metalloobrabotki i konstruktsiyakh metalloobrabatyvayushchikh mashin i komplektuyushchikh izdelii. Materialy VII Vserossiiskoi nauchno-tekhnicheskoi konf. (Modern Trends in Metal Processing Technologies and Designs of Metal Processing Machine Tools and Product Elements: Proc. 7th All-Russian Sci.-Tech. Conf.), Kudoyarov, R.G., Latypov, R.R., Fetsak, S.I., Durko, E.M., and Akmaev, O.K., Eds., Ufa: Ufimskii Gos. Aviats. Tekh. Univ., 2017, pp. 285–291.

  17. Koziner, Yu.D., Aref’ev, A.V., and Aref’ev, V.V., Optimization of high-speed milling of blade airfoil for the compressor of the gas turbine engine (GTE), Mezhdunarodnyi Nauchn.-Issled. Zh., 2017, nos. 3–4, pp. 52–55. https://doi.org/10.23670/IRJ.2017.57.127

  18. Gubanov, G.A. and Deev, K.A., Application of technological dampers at milling low-stiffness workpieces, Materialy XXVIII nauchno-tekhnicheskoi konferentsii po aerodinamike (Proc. 28th Sci.-Tech. Conf. on Aerodynamics), Zhukovskii, Moscow oblast: TsAGI, 2017, p. 106.

  19. Horn, T.J., Daudish, K., and Beckman, M., Fixture system and method for securing an airfoil during material removal operations, US Patent 10105804, 2018.

  20. Afonin, V.L., Smolentsev, A.N., and Gavrilina, L.V., Analysis and synthesis of dynamic characteristics of machine-tool equipment based on rotary linear modules, J. Mach. Manuf. Reliab., 2020, vol. 49, no. 3, pp. 189–196. https://doi.org/10.3103/S1052618820030024

    Article  Google Scholar 

  21. Sinha, A., Swain, B., Behera, A., Mallick, P., Samal, S.K., Vishwanatha, H.M., and Behera, A., A review on the processing of aero-turbine blade using 3D print techniques, J. Manuf. Mater. Process., 2022, vol. 6, no. 1, p. 16. https://doi.org/10.3390/jmmp6010016

    Article  CAS  Google Scholar 

  22. Thomas, D. and Gleadall, A., Advanced metal transfer additive manufacturing of high temperature turbine blades, Int. J. Adv. Manuf. Technol., 2022, vol. 120, nos. 9–10, pp. 6325–6335. https://doi.org/10.1007/s00170-022-09176-2

    Article  Google Scholar 

  23. Raikis, O., Diode lasers for laser cladding: Status quo-quo vadis, Fotonika, 2015, vol. 3, no. 51, pp. 48–55.

    Google Scholar 

  24. Zemlyakov, E.V., Babkin, K.D., Korsmik, R.S., Sklyar, M.O., and Kuznetsov, M.V., Prospects of use of laser cladding technology for restoration of compressor blades of gas turbine engines, Fotonika, 2016, vol. 4, no. 4, pp. 10–22. https://doi.org/10.22184/1993-7296.2016.58.4.10.22

    Article  Google Scholar 

  25. Gerasimov, V.V., From single-crystal uncooled blades to turbines blades with penetration (transpiration) cooling made by additive technologies (review on technology of single-crystal GTE blades casting), Tr. VIAM, 2016, no. 10, p. 1. https://doi.org/10.18577/2307-6046-2016-0-10-1-1

  26. Sotov, A.V., Smelov, V.G., Nosova, E.A., and Kosyrev, S.A., Impulse laser build-up welding blades of gas turbine engines, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2013, vol. 15, nos. 6–4, pp. 973–977.

  27. Jones, J.B., McNutt, P., Tosi, R., Perry, C., and Wimpenny, D.I., Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine, 23rd Annual Int. Solid Freeform Fabrication Symposium, Austin, Texas: 2012, p. 821.

  28. Dobrynin, D.A., Pavlova, T.V., Afanasyev-Khodykin, A.N., and Alekseeva, M.S., The use of electrolytic-plasma treatment for repair of GTE blades, Tr. VIAM, 2019, vol. 8, no. 8, pp. 18–26. https://doi.org/10.18577/2307-6046-2019-0-8-18-26

    Article  Google Scholar 

  29. Bekaev, A.A. and Denisov, R.A., Analysis of technological methods for processing complex-profile products on example of blades of blisks of gas turbine engines (GTE), MIKMUS-2014. Trudy konferentsii (MIKMUS-2014: Proc. Conf.), Inst. Mashinovedeniya Ross. Akad. Nauk, 2015, p. 384.

  30. Vdovin, R.A., Formirovanie tekhnologicheskikh osnov izgotovleniya rabochikh lopatok turbiny GTD. Monografiya (Formation of Technological Foundations for Manufacturing Running Blades of the GTE Turbine), Samara: Samarskii Nats. Issled. Univ. Akademika S.P. Koroleva, 2021.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Smolentsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Polyakov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolentsev, A.N., Rakov, D.L. & Sukhorukov, R.Y. Modern Technological Processes of Shaping in the Treatment of the Flowing Part of GTE Blades. J. Mach. Manuf. Reliab. 52 (Suppl 1), S35–S44 (2023). https://doi.org/10.1134/S1052618823090133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1052618823090133

Keywords:

Navigation