Skip to main content
Log in

Changes in the Structural-Phase State and Dislocation Density of Ti49.8Ni50.2 Alloy Depending on the Isochronal Annealing Temperature after Severe Plastic Deformation by abc Pressing at 573 K

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

X-ray diffraction studies were conducted to examine changes in the structural-phase state and dislocation density of Ti49.8Ni50.2 alloy depending on the isochronal annealing temperature after severe plastic deformation by abc pressing at 573 K. The total true strain achieved in the alloy specimens during abc pressing was e = 9.55. Isochronal annealing was carried out for 1 h at 573, 673, 773, 873 and 973 K. Analysis of all studied specimens at room temperature revealed the coexistence of R and B19′ phases, whose relative fractions varied with annealing temperature. The high-temperature B2 phase was not detected. It was found that the most rapid decrease in the dislocation density, which was measured at 393 K (in the B2 state), occurred after annealing at 673 and 773 K. Specimens annealed at 773 K had the minimum dislocation density, which is more than an order of magnitude lower than the dislocation density immediately after abc pressing. In the same temperature range, there is a significant decrease in the root-mean-square B2 lattice microdistortions <ε2>1/2 and a slight increase in the average size of coherently diffracting domains (crystallities). After abc pressing and isochronal annealing, the main contribution to the intrinsic X-ray line broadening is made by B2 lattice microdistortions, while the contribution from crystallite size is insignificant. The obtained results show that intense recrystallization in Ti49.8Ni50.2 alloy after abc pressing at 573 K begins at T ≥ 773 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Otsuka, K. and Ren, X., Physical Metallurgy of TiNi-Based Shape Memory Alloys, Progr. Mater. Sci., 2005, vol. 50, pp. 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  2. Otsuka, K. and Wayman, C.M., Shape Memory Materials, Cambridge: Cambridge University Press, 1998.

  3. Jani, M., Leary, M., Subic, A., and Gibson, M.A., A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, vol. 56, pp. 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  4. Valiev, R.Z., Zhilyaev, A.P., and Langdon, T.G., Bulk Nanostructured Materials: Fundamentals and Applications, New Jersey: Wiley & Sons, 2014.

  5. Valiev, R.Z. and Langdon, T.G., Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Progr. Mater. Sci., 2006, vol. 51, pp. 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  6. Zhang, X., Song, J., Huang, C., Xia, B., Chen, B., Sun, X., and Xie, C., Microstructures Evolution and Phase Transformation Behaviors of Ni-Rich TiNi Shape Memory Alloys after Equal-Channel Angular Extrusion, J. Alloys Compd, 2011, vol. 509, pp. 3006–3012. https://doi.org/10.1016/j.jallcom.2010.11.189

    Article  Google Scholar 

  7. Shamsolhodaei, A., Zarei-Hanzaki, A., and Moghaddam, M., Structural and Functional Properties of a Semi Equiatomic NiTi Shape Memory Alloy Processed by Multi-Axial Forging, Mater. Sci. Eng. A, 2017, vol. 700, pp. 1–9. https://doi.org/10.1016/j.msea.2017.04.011

    Article  Google Scholar 

  8. Kashin, O., Lotkov, A., Grishkov, V., Krukovskii, K., Zhapova, D., Mironov, Y., Girsova, N., Kashina, O., and Barmina, E., Effect of abc Pressing at 573 K on the Microstructure and Martensite Transformation Temperatures in Ti49.8Ni50.2 (at %), Metals, 2021, vol. 11, p. 1145. https://doi.org/10.3390/met11071145

    Article  Google Scholar 

  9. Prokofyev, E., Gunderov, D., Prokoshkin, S., and Valiev, R., Microstructure, Mechanical and Functional Properties of NiTi Alloys Processed by ECAP Technique, ESOMAT, 2009, p. 06028. https://doi.org/10.1051/esomat/200906028

  10. Lídia, F., Lucas, C., Guido, V., Andrea, K., Heide, K., Bernardi, H., and Otubo, J., ECAE Processed NiTi Shape Memory Alloy, Mater. Res., 2014, vol. 17, pp. 186–190. https://doi.org/10.1590/S1516-14392014005000034

    Article  Google Scholar 

  11. Churakova, A., Yudahina, A., Kayumova, E., and Tolstov, N., Mechanical Behavior and Fractographic Analysis of a TiNi Alloy with Various Thermomechanical Treatment, MATEC Web. Conf., 2019, vol. 298, p. 00019. https://doi.org/10.1051/matecconf/201929800019

    Article  Google Scholar 

  12. Lotkov, A.I., Grishkov, V.N., Baturin, A.A., Dudarev, E.F., Zhapova, D.Yu., and Timkin, V.N., The Effect of Warm Deformation by abc-Pressing Method on Mechanical Properties of Titanium Nickelide, Lett. Mater., 2015, vol. 5, pp. 170–174. https://doi.org/10.22226/2410-3535-2015-2-170-174

    Article  Google Scholar 

  13. Lotkov, A., Grishkov, V., Zhapova, D., Timkin, V., Baturin, A., and Kashin, O., Superelasticity and Shape Memory Effect after Warm abc-Pressing of TiNi-Based Alloy, Mater. Today Proc., 2017, vol. 4, pp. 4814–4818. https://doi.org/10.1016/j.matpr.2017.04.076

    Article  Google Scholar 

  14. Kashin, O., Krukovskii, K., Lotkov, A., and Grishkov, V., Effect of True Strains in Isothermal abc Pressing on Mechanical Properties of Ti49.8Ni50.2 Alloy, Metals, 2020, vol. 10(10), p. 1313. https://doi.org/10.3390/met10101313

    Article  Google Scholar 

  15. Gubicza, J., Balogh, L., Hellmig, R.J., Estrin, Y., and Ungár, T., Dislocation Structure and Crystallite Size in Severely Deformed Copper by X-Ray Peak Profile Analysis, Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 334–338. https://doi.org/10.1016/j.msea.2005.03.042

    Article  Google Scholar 

  16. Starink, M.J., Qiao, X.G., Zhang, J., and Gao, N., Predicting Grain Refinement by Cold Severe Plastic Deformation in Alloys Using Volume Averaged Dislocation Generation, Acta Mater., 2009, vol. 57, pp. 5796–5811. https://doi.org/10.1016/j.actamat.2009.08.006

    Article  ADS  Google Scholar 

  17. Qiao, X.G., Starink, M.J., and Gao, N., Hardness Inhomogeneity and Local Strengthening Mechanisms of an Al1050 Aluminum Alloy after One Pass of Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 52–58. https://doi.org/10.1016/j.msea.2009.01.051

    Article  Google Scholar 

  18. Chen, Y., Gao, N., Sha, G., Ringer, S.P., and Starink, M.J., Microstructural Evolution, Strengthening and Thermal Stability of an Ultrafine-Grained Al-Cu-Mg Alloy, Acta Mater., 2016, vol. 109, pp. 202–212. https://doi.org/10.1016/j.actamat.2016.02.050

    Article  ADS  Google Scholar 

  19. Tatyanin, E.V., Kurdyumov, V.G., and Fedorov, V.B., Production of Amorphous Ti-Ni Alloys by High-Pressure Torsion, Fiz. Met. Metalloved., 1986, vol. 62, no. 1, pp. 133–137.

    Google Scholar 

  20. Koike, J., Parkins, D.M., and Nastasi, M., Crystal-to-Amorphous Transformation of NiTi Induced by Cold Rolling, J. Mater. Res., 1990, vol. 5, pp. 1414–1418. https://doi.org/10.1557/jmr.1990.1414

    Article  ADS  Google Scholar 

  21. Churakova, A. and Gunderov, D.V., Microstructural and Mechanical Stability of a Ti–50.8 at % Ni Shape Memory Alloy Achieved by Thermal Cycling with a Large Number of Cycles, Metals, 2020, vol. 10, p. 227. https://doi.org/10.3390/met10020227

    Article  Google Scholar 

  22. Lotkov, A., Grishkov, V., Laptev, R., Mironov, Y., Zhapova, D., Girsova, N., Gusarenko, A., Barmina, E., and Kashina, O., Crystal Structure Defects in Titanium Nickelide after abc Pressing at Lowered Temperature, Materials, 2022, vol. 15, p. 4298. https://doi.org/10.3390/ma15124298

    Article  ADS  Google Scholar 

  23. Lin, H., Hua, P., Huang, K., Li, Q., and Sun, Q., Grain Boundary and Dislocation Strengthening of Nanocrystalline NiTi for Stable Elastocaloric Cooling, Scripta Mater., 2023, vol. 226, p. 115227. https://doi.org/10.1016/j.scriptamat.2022.115227

    Article  Google Scholar 

  24. Liu, T., Wu, Z., Zhou, W., Zhong, M., Lin, J., and Yang, Y., Quasilinear Pseudoelasticity and Small Hysteresis in SLM-Fabricated NiTi, J. Alloys Compd, 2023, vol. 933, p. 167694. https://doi.org/10.1016/j.jallcom.2022.167694

    Article  Google Scholar 

  25. Shi, X.B., Guo, F.M., Zhang, J.S., Ding, H.L., and Cui, L.S., Grain Size Effect on Stress Hysteresis of Nanocrystalline NiTi Alloys, J. Alloys Compd, 2016, vol. 688, pp. 62–68. https://doi.org/10.1016/j.jallcom.2016.07.168

    Article  Google Scholar 

  26. Warren, B.E. and Averbach, B.L., The Separation of Cold-Work Distortion and Particle Size Broadening in X-Ray Patterns, J. Appl. Phys., 1952, vol. 23, p. 497. https://doi.org/10.1063/1.1702234

    Article  ADS  Google Scholar 

  27. Williamson, G.K. and Hall, W.H., X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, vol. 1, pp. 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  28. Krill, C.E. and Birringer, R., Estimating Grain-Size Distributions in Nanocrystalline Materials from X-Ray Diffraction Profile Analysis, Philos. Mag. A, 1998, vol. 77, pp. 621–640. https://doi.org/10.1080/01418619808224072

    Article  ADS  Google Scholar 

  29. Williamson, G.K. and Smallman, R.E., Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye–Scherrer Spectrum, Philos. Mag., 1956, vol. 1, pp. 34–46. https://doi.org/10.1080/14786435608238074

    Article  ADS  Google Scholar 

  30. Smallman, R.E. and Westmacott, K.H., Stacking Faults in Face-Centered Cubic Metals and Alloys, Philos. Mag., 1957, vol. 2, pp. 669–683. https://doi.org/10.1080/14786435708242709

    Article  ADS  Google Scholar 

  31. Chumlyakov, Yu.I., Surikova, N.S., and Korotaev, A.D., Orientation Dependence of Strength and Plastic Properties of Titanium Nickelide Single Crystals, Fiz. Met. Metalloved., 1996, vol. 81, no. 6, pp. 148–158.

    Google Scholar 

  32. Surikova, N.S. and Chumlyakov, Yu.I., The Peculiarities of Deformation and Fracture of Hardened Titanium Nickelide, Phys. Mesomech., 2000, vol. 3, no. 1, pp. 93.

    Google Scholar 

  33. Pelton, A.R., Russell, S.M., and DiCello, J., The Physical Metallurgy of Nitinol for Medical Applications, JOM, 2003, vol. 55, pp. 33–37. https://doi.org/10.1007/s11837-003-0243-3

    Article  Google Scholar 

  34. Elahinia, M.H., Hashemi, M., Tabesh, M., and Bhaduri, S.B., Manufacturing and Processing of NiTi Implants: A Review, Progr. Mater. Sci., 2012, vol. 57, pp. 911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  Google Scholar 

  35. Lin, H.C. and Wu, S.K., Determination of Heat of Transformation in a Cold Rolled Martensitic TiNi Alloy, Metall. Trans. A, 1993, vol. 24, pp. 293–299. https://doi.org/10.1007/BF02657316

    Article  Google Scholar 

  36. Mahmud, A.S., Wu, Z., Yang, H., and Liu, Y., Effect of Cold Work and Partial Annealing on Thermomechanical Behaviour of Ti–50.5 at % Ni, Shape Memory Superelasticity, 2017, vol. 3, pp. 57–66. https://doi.org/10.1007/s40830-017-0103-6

    Article  Google Scholar 

  37. Lotkov, A.I., Grishkov, V.N., Udovenko, V.A., and Kuznetsov, A.V., Effect of Low-Temperature Annealing on the Martensite Start Temperature in Titanium Nickelide, Fiz. Met. Metalloved., 1982, vol. 54, no. 6, pp. 1202–1204.

    Google Scholar 

  38. Baturin, A.A. and Lotkov, A.I., Determination of Vacancy Formation Energy of TiNi Compounds with a B2 Structure by Positron Annihilation, Fiz. Met. Metalloved., 1993, vol. 76, no. 2, pp. 168–170.

    Google Scholar 

Download references

Funding

The investigation was carried out within the government statement of work for ISPMS SB RAS (research line FWRW-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Mironov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, Y.P., Lotkov, A.I., Grishkov, V.N. et al. Changes in the Structural-Phase State and Dislocation Density of Ti49.8Ni50.2 Alloy Depending on the Isochronal Annealing Temperature after Severe Plastic Deformation by abc Pressing at 573 K. Phys Mesomech 27, 175–182 (2024). https://doi.org/10.1134/S1029959924020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959924020061

Keywords:

Navigation