Skip to main content
Log in

Structure, Martensitic Transformations, and Mechanical Properties of Aging Nanocrystalline Ti–50.9 at % Ni Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The effect of aging temperature in the range of 300–500°C on the structure, R martensitic transformations and mechanical characteristics of nanocrystalline Ti–50.9 at % Ni alloy with a grain/subgrain structure was studied. It was found that variation in the spatial distribution of coherent Ti3Ni4 particles in the nanostructure from location on dislocations during low-temperature aging to precipitation at dislocation boundaries under accelerated aging is accompanied by a change in the morphology of the R phase from a nanodomain to a self-accommodating lamellar structure. The nanodomain structure of the R phase contributes to homogeneous deformation of the alloy during loading/unloading and stabilization of superelasticity. When loading the alloy with a lamellar R-phase morphology, localized deformation bands are formed by the R-phase reorientation in a Lüders deformation manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Otsuka, K. and Ren, X., Physical Metallurgy of TiNi-Based Shape Memory Alloys, Progr. Mater. Sci., 2005, vol. 50, pp. 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  2. Elahinia, M.H., Hashemi, M., Tabesh, M., and Bhaduri, S.B., Manufacturing and Processing of NiTi Implants: A Review, Progr. Mater. Sci., 2012, vol. 57, pp. 911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  Google Scholar 

  3. Shape Memory Alloys for Biomedical Applications, Yoneyama, T. and Miyazaki, S., Eds., Cambridge: Woodhead Publishing Ltd., 2008.

  4. Pelton, A.R., Russell, S.M., and DiCello, J., The Physical Metallurgy of Nitinol for Medical Applications, JOM, 2003, vol. 55, pp. 33–37. https://doi.org/10.1007/s11837-003-0243-3

    Article  Google Scholar 

  5. Pushin, V.G., Stolyarov, V.V., Valiev, R.Z., Lowe, T.C., and Zhu, Y.T., Nanostructured TiNi-Based Shape Memory Alloys Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 386–389.

    Article  Google Scholar 

  6. Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Bulk Nanostructured Materials from Severe Plastic Deformation, Progr. Mater. Sci., 2000, vol. 45, pp. 911–946. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  7. Sauvage, X., Wilde, G., Divinski, S.V., Horitac, Z., and Valiev, R.Z., Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena, Mater. Sci. Eng. A, 2012, vol. 540, pp. 1–12. https://doi.org/10.1016/j.msea.2012.01.080

    Article  Google Scholar 

  8. Ryklina, E.P., Polyakova, K.A., Tabachkova, N.Y., Resnina, N.N., and Prokoshkin, S.D., Effect of B2 Austenite Grain Size and Aging Time on Microstructure and Transformation Behavior of Thermomechanically Treated Titanium Nickelide, J. Alloys Compd, 2018, vol. 764, pp. 626–638. https://doi.org/10.1016/j.jallcom.2018.06.102

    Article  Google Scholar 

  9. Waitz, T., Kazykhanov, V., and Karnthaler, H.P., Martensitic Phase Transformations in Nanocrystalline NiTi Studied by TEM, Acta Mater., 2004, vol. 52, pp. 137–147. https://doi.org/10.1016/j.actamat.2003.08.036

    Article  ADS  Google Scholar 

  10. Shi, X., Cui, L., Jiang, D., Yu, C., Guo, F., Yu, M., Ren, Y., and Liu, Y., Grain Size Effect on the R Phase Transformation of Nanocrystalline NiTi Shape Memory Alloys, J. Mater. Sci., 2014, vol. 49, pp. 4643–4647. https://doi.org/10.1007/s10853-014-8167-6

    Article  ADS  Google Scholar 

  11. Mahmud, A.S., Wu, Z., Yang, H., and Liu, Y., Effect of Cold Work and Partial Annealing on Thermomechanical Behaviour of Ti–50.5 at % Ni, Shape Mem. Superelasticity, 2017, vol. 3, pp. 57–66. https://doi.org/10.1007/s40830-017-0103-6

    Article  Google Scholar 

  12. Prokofiev, E.A., Burow, A., Payton, E., Zarnetta, R., Frenzel, J., Gunderov, D., Valiev, R., and Eggeler, G., Suppression of Ni4Ti3 Precipitation by Grain Size Refinement in Ni-Rich NiTi Shape Memory Alloys, Adv. Eng. Mater., 2010, vol. 12, p. 747. https://doi.org/10.1002/adem.201000101

    Article  Google Scholar 

  13. Khalil-Allafi, J., Dlouhý, A., and Eggeler, G., Ni4Ti3-Precipitation during Aging of NiTi Shape Memory Alloys and Its Influence on Martensitic Phase Transformations, Acta Mater., 2002, vol. 50, pp. 4255–4274. https://doi.org/10.1016/S1359-6454(02)00257-4

    Article  ADS  Google Scholar 

  14. Zheng, Y., Jiang, F., Li, L., Yang, H., and Liu, Y., Effect of Ageing Treatment on the Transformation Behaviour of Ti–50.9 at % Ni Alloy, Acta Mater., 2010, vol. 58, pp. 3444–3458. https://doi.org/10.1016/j.actamat.2007.10.020

    Article  Google Scholar 

  15. Chen, Y., Li, A., Ma, Z., Wang, T., Liu, Y., Yu, K., Yang, F., Jiang, D., Zhao, K., Yang, H., Ren, Y., and Cui, L., Step-Wise R Phase Transformation Rendering High-Stability Two-Way Shape Memory Effect of a NiTiFe-Nb Nanowire Composite, Acta Mater., 2021, vol. 219, p. 117258. https://doi.org/10.1016/j.actamat.2021.117258

    Article  Google Scholar 

  16. Wang, X.B., Verlinden, B., and Van Humbeeck, J., R-Phase Transformation in NiTi Alloys, Mater. Sci. Technol., 2014, vol. 30, pp. 1517–1529. https://doi.org/10.1179/1743284714Y.0000000590

    Article  ADS  Google Scholar 

  17. Poletika, T.M., Girsova, S.L., and Lotkov, A.I., Ti3Ni4 Precipitation Features in Heat-Treated Grain/Subgrain Nanostructure in Ni-Rich TiNi Alloy, Intermetallics, 2020, vol. 127, p. 106966. https://doi.org/10.1016/j.intermet.2020.106966

    Article  Google Scholar 

  18. Poletika, T.M., Girsova, S.L., Lotkov, A.I., Kudryachov, A.N., and Girsova, N.V., Structure and Multistage Martensite Transformation in Nanocrystalline Ti-50.9Ni Alloy, Metals, 2021, vol. 11, p. 1262. https://doi.org/10.3390/met11081262

    Article  Google Scholar 

  19. Prokoshkin, S., Dubinskiy, S., and Brailovski, V., Features of a Nanosubgrained Structure in Deformed and Annealed Ti-Ni SMA: A Brief Review, Shap. Mem. Superelasticity, 2019, vol. 5, pp. 336–345. https://doi.org/10.1007/s40830-019-00241-6

    Article  ADS  Google Scholar 

  20. Miyazaki, S. and Wayman, C.M., The R-Phase Transition and Associated Shape Memory Mechanism in Ti-Ni Single Crystals, Acta Metall., 1988, vol. 36, pp. 181–192.

    Article  Google Scholar 

  21. Chen, Y., Liu, Y., Yu, K., Yang, F., Jiang, D., Ren, Y., and Cui, L., Small-Scale Confined R-Phase Transformation in Ni47Ti49Fe2Nb2 Alloy, Materialia, 2021, vol. 20, p. 101262. https://doi.org/10.1016/j.mtla.2021.10126

    Article  Google Scholar 

  22. Wang, D., Hou, S., Wang, Yu, Ding, X., Ren, S., Ren, X., and Wang, Y., Superelasticity of Slim Hysteresis over a Wide Temperature Range by Nanodomains of Martensite, Acta Mater., 2014, vol. 66, pp. 349–359. https://doi.org/10.1016/j.actamat.2013.11.022

    Article  ADS  Google Scholar 

  23. Šittner, P., Landa, M., Lukáš, P., and Novák, V., R-Phase Transformation in NiTi Alloys, Mech. Mater., 2006, vol. 38, pp. 475–492. https://doi.org/10.1016/j.mechmat.2005.05.025

    Article  Google Scholar 

  24. Favier, D., Louche, H., Schlosser, P., Orgéas, L., Vacher, P., and Debove, L., Homogeneous and Heterogeneous Deformation Mechanisms in an Austenitic Polycrystalline Ti–50.8 at % Ni Thin Tube under Tension. Investigation Via Temperature and Strain Fields Measurements, Acta Mater., 2007, vol. 55, pp. 5310–5322. https://doi.org/10.1016/j.actamat.2007.05.027

    Article  ADS  Google Scholar 

  25. Feng, B., Kong, X., Hao, S., Liu, Y., Yang, Y., Yang, H., Guo, F., Jiang, D., Wang, T., Ren, Y., and Cui, L., In-Situ Synchrotron High Energy X-Ray Diffraction Study of Micromechanical Behaviour of R Phase Reorientation in Nanocrystalline NiTi Alloy, Acta Mater., 2020, vol. 194, pp. 565–576. https://doi.org/10.1016/j.actamat.2020.05.004

    Article  ADS  Google Scholar 

  26. Miyazaxi, S. and Otsuka, K., Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys, Metall. Mater. Trans. A, 1986, vol. 17, pp. 53–63. https://doi.org/10.1007/BF02644442

    Article  ADS  Google Scholar 

  27. Zhang, X. and Sehitoglu, H., Crystallography of the B2 → R → B19 Phase Transformations in NiTi, Mater. Sci. Eng. A, 2004, vol. 374, pp. 292–302. https://doi.org/10.1016/j.msea.2004.03.013

    Article  Google Scholar 

  28. Wang, D., Hou, S., Wang, Yu., Ding, X., Ren, S., Ren, X., and Wang, Y., Superelasticity of Slim Hysteresis over a Wide Temperature Range by Nanodomains of Martensite, Acta Mater., 2014, vol. 66, pp. 349–359. http://dx.doi.org/10.1016/j.actamat.2013.11.022

    Article  ADS  Google Scholar 

  29. Wang, J. and Sehitoglu, H., Martensite Modulus Dilemma in Monoclinic NiTi—Theory and Experiments, Int. J. Plast., 2014, vol. 61, pp. 17–31. https://doi.org/10.1016/j.ijplas.2014.05.005

    Article  Google Scholar 

Download references

Funding

The investigation was carried out within the government statement of work for ISPMS SB RAS (research line FWRW-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Poletika.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletika, T.M., Girsova, S.L., Bitter, S.M. et al. Structure, Martensitic Transformations, and Mechanical Properties of Aging Nanocrystalline Ti–50.9 at % Ni Alloy. Phys Mesomech 27, 152–162 (2024). https://doi.org/10.1134/S1029959924020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959924020048

Keywords:

Navigation