Skip to main content
Log in

Effect of Preliminary Ball Milling of Nanomodifiers on Their Efficiency in Laser Surface Treatment of Titanium

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This study examines how preliminary mechanical milling of a modifying TiN-based powder mixture affects the morphology of the CO2 laser-treated surface, the weld pool morphology, and the cross-sectional structure of the material. Ultrafine titanium nitride particles used as nanomodifier have low wettability by liquid metal, are not entrained by its convective flows, and tend to accumulate in the subsurface layer, which makes it difficult to effectively modify the structure within the treated material. Ball milling of the modifying Ti + TiN mixture for 9 min leads to the formation of composite particles (5–7 µm) with ultrafine TiN particles uniformly distributed over their surface and volume. When the composite particles are melted by the laser beam, they turn to ultrafine TiN particles of nanomodifier coated with a thin titanium layer, which have a smaller contact angle. As a result, the particles are more evenly distributed over the weld pool and the number of crystallization centers increases, leading to the formation of a fine homogeneous structure of the material. The microhardness increases by 32%, and its standard deviation decreases by a factor of 1.5–3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ilyin, A.A., Kolachev, B.A., and Polkin, I.S., Titanium Alloys, Moscow: VILS-MATI, 2009.

  2. Wulf, B.K., Heat Treatment of Titanium Alloys, Moscow: Metallurgiya, 1969.

  3. Gorynin, I.V., Titanium Alloys for Marine Application, Mater. Sci. Eng. A, 1999, vol. 263, no. 2, pp. 112–116. https://doi.org/10.1016/S0921-5093(98)01180-0

    Article  Google Scholar 

  4. Oryshchenko, A.S., Gorynin, I.V., Leonov, V.P., Kudryavtsev, A.S., Mikhailov, V.I., and Chudakov, E.V., Marine Titanium Alloys: Present and Future, Inorg. Mater. Appl. Res., 2015, vol. 6, no. 6, pp. 571–579. https://doi.org/10.1134/S2075113315060106

    Article  Google Scholar 

  5. Balazic, M., Kopac, J., Jackson, M.J., and Waqar, A., Review: Titanium and Titanium Alloy Applications in Medicine, Int. J. Nano Biomater., 2007, vol. 1(1). https://doi.org/10.1504/IJNBM.2007.016517

  6. Williams, J.C. and Boyer, R.R., Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components, Metals, 2020, vol. 10(6), p. 705. https://doi.org/10.3390/met10060705

  7. Chechulin, B.B., Ushkov, S.S., Razuvaeva, I.N., and Goldfain, V.N., Titanium Alloys in Mechanical Engineering, Leningrad: Mashinostroeniye, 1977.

  8. Poondla, N., Srivatsan, T.S., Patnaik, A., and Petraroli, M., A study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloys Compd, 2009, vol. 486, pp. 162–167. https://doi.org/10.1016/j.jallcom.2009.06.172

    Article  CAS  Google Scholar 

  9. Niinomi, M., Mechanical Properties of Biomedical Titanium Alloy, Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–236. https://doi.org/10.1016/S0921-5093(97)00806-X

    Article  Google Scholar 

  10. Qian, L., Xiao, X., Sun, Q., and Yu, T., Anomalous Relationship between Hardness and Wear Properties of a Superelastic Nickel–Titanium Alloy, Appl. Phys. Lett., 2004, vol. 84, pp. 1076–1078. https://doi.org/10.1063/1.1886245

    Article  CAS  ADS  Google Scholar 

  11. Brandl, E., Schoberth, A., and Leyens, C., Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM), Mater. Sci. Eng. A, 2012, vol. 532, pp. 295–307. https://doi.org/10.1016/j.msea.2011.10.095

    Article  CAS  Google Scholar 

  12. Stolyarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z., and Zhu, Y.T., Reduction of Friction Coefficient of Ultrafine-Grained CP Titanium, Mater. Sci. Eng. A, 2004, vol. 371, pp. 313–317. https://doi.org/10.1016/j.msea.2003.12.026

    Article  CAS  Google Scholar 

  13. Budinski, K.G., Tribological Properties of Titanium Alloys, Wear, 1991, vol. 151, pp. 203–217. https://doi.org/10.1016/0043-1648(91)90249-T

    Article  CAS  Google Scholar 

  14. Zhang, L.C., Chen, L.-Y., and Wang, L., Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, vol. 22(5), p. 2070017. https://doi.org/10.1002/adem.202070017

    Article  Google Scholar 

  15. Zhang, D., Qin, Y., Feng, W., Huang, M., Wang, X., and Yang, S., Microstructural Evolution of the Amorphous Layers on Mg-Zn-Ca Alloy during Laser Remelting Process, Surf. Coat. Technol., 2019, vol. 363, pp. 87–94. https://doi.org/10.1016/j.surfcoat.2019.02.051

    Article  CAS  Google Scholar 

  16. Das, B., Nath, A., and Bandyopadhyay, P.P., Scratch Resistance and Damage Mechanism of Laser Remelted Thermally Sprayed Ceramic Coating, Surf. Coat. Technol., 2019, vol. 364, pp. 157–169. https://doi.org/10.1016/j.surfcoat.2019.02.078

    Article  CAS  Google Scholar 

  17. Siddiqui, A.A., Dubey, A.K., and Paul, C.P., A Study of Metallurgy and Erosion in Laser Surface Alloying of AlxCu0.5FeNiTi High Entropy Alloy, Surf. Coat. Technol., 2019, vol. 361, pp. 27–34. https://doi.org/10.1016/j.surfcoat.2019.01.042

  18. Dai, J., Li, S., and Zhang, H., Microstructure and Wear Properties of Self-Lubricating TiB2-TiCxNy Ceramic Coatings on Ti-6Al-4V Alloy Fabricated by Laser Surface Alloying, Surf. Coat. Technol., 2019, vol. 369, pp. 269–279. https://doi.org/10.1016/j.surfcoat.2019.04.056

  19. Lei, J., Shi, C., Zhou, S., Gu, Z., and Zhang, L.C., Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-Based Composite Coating by Laser Cladding, Surf. Coat. Technol., 2018, vol. 334, pp. 274–285. https://doi.org/10.1016/j.surfcoat.2017.11.051

    Article  CAS  Google Scholar 

  20. Shi, C., Lei, J., Zhou, S., Dai, X., and Zhang, L.C., Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-Based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents, J. Alloys Compd, 2018, vol. 744, pp. 146–155. https://doi.org/10.1016/j.jallcom.2018.02.063

    Article  CAS  Google Scholar 

  21. Stepanova, N.V., Kuznetsov, V.A., Malyutina, Yu.N., Terentyev, D.S., Lozhkin, V.S., and Razumakov, A.A., Structure and Mechanical Properties of Gray Cast Iron Modified with a Mechanically Activated Mixture of Tungsten Carbide and Chromium, Obrabotka Metallov: Tekhnolog. Oborud. Instrum., 2013, no. 3, pp. 121–126.

    Google Scholar 

  22. Martyushev, N.V., Zykova, A.P., and Bashev, V.S., Modification of AK12 Alloy with Ultrafine Tungsten Powder Particles, Obrabotka Metallov: Tekhnolog. Oborud. Instrum., 2017, no. 3, pp. 51–58.

    Google Scholar 

  23. Wang, K., Jiang, H.Y., Jia, Y.W., Zhou, H., Wang, Q.D., Ye, B., and Ding, W.J., Nanoparticle-Inhibited Growth of Primary Aluminum in Al-10Si Alloys, Acta Mater., 2016, vol. 103, pp. 252–263. https://doi.org/10.1016/j.actamat.2015.10.005

    Article  CAS  ADS  Google Scholar 

  24. Cherepanov, A.N. and Ovcharenko, V.E., Effect of Nanostructured Composite Powders on the Structure and Strength Properties of the High-Temperature Inconel 718 Alloy, Phys. Metals Metallogr., 2015, vol. 116, no. 12, pp. 1279–1284. https://doi.org/10.1134/S0031918X1510004X

    Article  ADS  Google Scholar 

  25. Grigorenko, G.M., Kostin, V.A., Golovko, V.V., Zhukov, V.V., and Zuber, T.A., Effect of Nanopowder Inoculators on the Structure and Properties of Cast HSLA Steels, Sovremenn. Electrometallurg., 2015, no. 2, pp. 32–41.

    Article  Google Scholar 

  26. Kostin, V.A., Grigorenko, G.M., and Zhukov, V.V., Modification of the Structure of HSLA Steel Welds with Refractory Metal Nanoparticles, in Stroitelstvo, Materialovedeniye, Mashinostroyeniye: Starodubovskiye Chteniya, 2016, pp. 93–98.

  27. Orishich, A.M., Cherepanov, A.N., Shapeev, V.P., and Pugacheva, N.B., Nanomodification of Welded Joints in Laser Welding of Metals and Alloys, Novosibirsk: Izd-vo SO RAN, 2014.

  28. Boldyrev, A.M., Rubtsova, E.M., Orlov, A.S., Sizintsev, S.V., Tkachev, A.G., and Pershin, V.F., Enhancement of the Modification Efficiency of Fusion Welds, in Fundamental, Exploratory and Applied Research of the Russian Academy of Architecture and Construction Sciences for the Development of Architecture, Urban Planning and the Construction Industry of the Russian Federation in 2018, Moscow: Russian Academy of Architecture and Construction Sciences, 2019, pp. 114–122.

  29. Cherepanov, A.N., Drozdov, V.O., Malikov, A.G., Orishich, A.M., and Mali, V.I., Studying the Laser Welding of Porous Metals with the Application of Compact Inserts and Nanopowders, Phys. Met. Metallogr., 2021, vol. 122, no. 3, pp. 301–306. https://doi.org/10.1134/S0031918X21030030

    Article  CAS  ADS  Google Scholar 

  30. Drozdov, V.O., Orishich, A.M., Malikov, A.G., and Karpov, E.V., Effect of Nanomodification Additives at Laser Welding of Aluminum-Lithium Alloys for Air-Space Applications, in AIP Conf. Proc.: Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, Dedicated to the 150th Anniversary of the Birth of S.A. Chaplygin, 2019, p. 030115.

  31. Sheksheev, M.A., Mikhailitsyn, S.V., Sychkov, A.B., Emelyushin, A.N., and Shiryaeva, E.N., Effect of Ultrafine Tungsten Monocarbide Particles on the Structure of Deposited Metal, Vestnik YuUGU. Metallurgiya, 2018, vol. 18, no. 4, pp. 128–136.

    Google Scholar 

  32. Lazarova, R., Dimitrova, R., Murdjeva, Y., Valkov, St., and Petrov, P., Layers Obtained on Aluminum by Nanopowder Deposition and Subsequent Electron Beam Scanning, in Materials and Manufacturing Processes, Taylor & Francis, 2018, pp. 1–5. https://doi.org/10.1080/10426914.2018.1453148

  33. Anestiev, L., Lazarova, R., Petrov, P., Dyakova, V., and Stanev, L., On the Strengthening and the Strength Reducing Mechanisms at Aluminium Matrix Composites Reinforced with TiCN Nano-Sized Particulates, Philos. Mag., 2021, vol. 101, no. 2, pp. 129–153. https://doi.org/10.1080/14786435.2020.1821114

    Article  CAS  ADS  Google Scholar 

  34. Cherepanov, A.N., Drozdov, V.N., Malikov, A.G., Orishich, A.M., Mul, D.O., and Shevtsova, L.I., Effect of Nanostructured Powder Compositions on the Surface Layer Characteristics of Laser Processed Steel, Tyazhel. Mashinostroen., 2016, no. 6, pp. 2–4.

    Google Scholar 

  35. Cherepanov, A.N., Afonin, Yu.V., Malikov, A.G., and Orishich, A.M., The Use of Nanopowders of Refractory Compounds in Laser Processing of Materials, Tyazhel. Mashinostroen., 2008, no. 4, pp. 25–26.

    Google Scholar 

  36. Cherepanov, A.N., Orishich, A.M., and Shapeev, V.P., Laser Welding of Metals and Alloys Modified with Nanopowder Additives. Theory and Experiment, Fiz. Mezomekh., 2013, vol. 16, no. 1, pp. 91–104. https://doi.org/10.24411/1683-805X-2013-00033

    Article  CAS  Google Scholar 

  37. Cherepanova, V.K. and Cherepanov, A.N., Solid Phase Nucleation in a Metal Melt Modified with Spherical Nanoparticles, in Metallurgy: Technologies, Innovations, Quality. Proc. 21st Int. Applied Research Conf., 2 vols., Protopopova, E.V., Ed., 2019, pp. 153–159.

  38. Cherepanova, V.K. and Cherepanov, A.N., A Model of Heterogeneous Nucleation on Cubic Nanoparticles, Dokl. Akad. Nauk Vyssh. Shkoly Ross. Feder., 2019, no. 1(42), pp. 7–17.

    Google Scholar 

  39. Ellis, D. and Bero, Zh.-M., Patent RU 2615405, Improvement of Fiber-Reinforced Materials, Bull. FIPS, 2017.

  40. Alekseev, A.V. and Predtechensky, M.R., Comparative Study of Nanoparticle Coating Using a Planetary Ball Mill and a Hydraulic Press, Sistemy Analiz. Obrabot. Dannykh, 2012, no. 3, pp. 35–44.

    Google Scholar 

  41. Drozdov, V.O., Chesnokov, A.E., Cherepanov, A.N., and Smirnov, A.V., Study of the Influence of the Time of Mechanical Processing of Powder Mixture of Composition Ti–25 wt % TiN in a Planetary Mill on the Characteristics of Composite Particles, J. Phys. Conf. Ser. XXII Winter School on Continuous Media Mechanics (WSCMM-2021), Perm, 22–26 March 2021, AIP Publ., 2021, vol. 1945, p. 012005(7). https://doi.org/10.1088/1742-6596/1945/1/012005

    Article  CAS  Google Scholar 

  42. Drozdov, V.O., Chesnokov, A.E., Cherepanov, A.N., and Smirnov, A.V., Study of the Formation of Nanostructured Composite Powders in a Plasma Jet, Thermophys. Aeromech., 2019, vol. 26, no. 5, pp. 739–744. https://doi.org/10.1134/S0869864319050111

    Article  ADS  Google Scholar 

  43. Kandeva, M., Panov, I., and Dochev, B., Effects of Nanomodifiers on the Wear Resistance of Aluminum-Silicon Alloy AlSi18 in Tribosystems in Case of Reversive Friction and Lubrication, J. Balkan Tribol. Assoc., 2020, vol. 26(4), pp. 637–652.

    Google Scholar 

  44. Poluboyarov, V.A., Korotaeva, Z.A., Korchagin, M.A., Lyakhov, N.Z., Cherepanov, A.N., and Kalinina, A.P., Application of Mechanically Activated Ultrafine Ceramic Powders to Improve the Properties of Metals and Alloys, Tekhnik. Mashistroen., 2003, no. 6, pp. 35–42.

    Google Scholar 

  45. Drozdov, V.O. and Cherepanov, A.N., Melting Point of the Coating on a Refractory Nanoparticle, Steel Transl., 2014, vol. 44, no. 2, pp. 96–98. https://doi.org/10.3103/S0967091214020041

    Article  Google Scholar 

Download references

Funding

The research results were obtained partly with the financial support of RFBR-ROSATOM Grant No. 20-21-00046 and partly through the Fundamental Research Program of the State Academies of Sciences for 2021–2023 (Project No. 121030500137-5), using the equipment of the Shared Use Center “Mechanics” at the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Chesnokov or K. A. Skorokhod.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, A.E., Drozdov, V.O., Skorokhod, K.A. et al. Effect of Preliminary Ball Milling of Nanomodifiers on Their Efficiency in Laser Surface Treatment of Titanium. Phys Mesomech 27, 79–87 (2024). https://doi.org/10.1134/S1029959924010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959924010089

Keywords:

Navigation