Skip to main content
Log in

A Study of the Structure and Mechanical Properties of Nb-Mo-Co-X (X = Hf, Zr, Ti) Refractory High-Entropy Alloys

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (HEAs) are a new class of metallic materials based on group 4–6 elements of the periodic table with possible additions of Al, Si, Re, C, or B. Some single-phase refractory HEAs can maintain high strength up to 1600°C, while multiphase compositions have more attractive specific properties at temperatures up to 1200°C. Here we examine the structure and mechanical properties of refractory HEAs Nb30Mo30Co20Hf20, Nb30Mo30Co20Zr20, and Nb30Mo30Co20Ti20 (at %). The alloys consisted of an intermetallic B2 matrix and particles of a disordered bcc phase, as well as a minor volume fraction of additional bcc (Nb30Mo30Co20Hf20 and Nb30Mo30Co20Zr20) or fcc (Nb30Mo30Co20Ti20) phases. When tested for uniaxial compression, Nb30Mo30Co20Ti20 alloy showed a higher yield strength in the temperature range of 22–1000°C than Nb30Mo30Co20Hf20 and Nb30Mo30Co20Zr20 alloys. Nb30Mo30Co20Zr20 alloy did not fail at temperatures of 22–800°C to a given 50% strain, while Nb30Mo30Co20Ti20 alloy turned out to be brittle. All alloys demonstrated high strain hardening in the temperature range of 22–800°C, and they can compete in terms of specific strength with commercial nickel and cobalt superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kracke, A., Superalloys, the Most Successful Alloy System of Modern Times—Past, Present, and Future, TMS, 2010, pp. 13–50. https://doi.org/10.7449/2010/superalloys_2010_13_50

  2. Liu, L., Zhang, J., and Ai, C., Nickel-Based Superalloys, Encycl. Mater. Met. Alloy., 2021, pp. 294–304. https://doi.org/10.1016/B978-0-12-803581-8.12093-4

  3. Pineau, A. and Antolovich, S.D., High Temperature Fatigue of Nickel-Base Superalloys—A Review with Special Emphasis on Deformation Modes and Oxidation, Eng. Fail. Anal., 2009, vol. 16, pp. 2668–2697. https://doi.org/10.1016/j.engfailanal.2009.01.010

    Article  Google Scholar 

  4. Joseph, C., Persson, C., and Hörnqvist Colliander, M., Influence of Heat Treatment on the Microstructure and Tensile Properties of Ni-Base Superalloy Haynes 282, Mater. Sci. Eng. A, 2017, vol. 679, pp. 520–530. https://doi.org/10.1016/j.msea.2016.10.048

    Article  Google Scholar 

  5. Zenk, C.H., Neumeier, S., Engl, N.M., Fries, S.G., Dolotko, O., Weiser, M., Virtanen, S., and Göken, M., Intermediate Co/Ni-Base Model Superalloys—Thermophysical Properties, Creep and Oxidation, Scripta Mater., 2016, vol. 112, pp. 83–86. https://doi.org/10.1016/j.scriptamat.2015.09.018

    Article  Google Scholar 

  6. Ruzic, J., Goto, K., Watanabe, I., Osada, T., Wu, L., and Ohmura, T., Temperature-Dependent Deformation Behavior of γ and γ′ Single-Phase Nickel-Based Superalloys, Mater. Sci. Eng. A, 2021, vol. 818, p. 141439. https://doi.org/10.1016/j.msea.2021.141439

    Article  Google Scholar 

  7. Osada, T., Gu, Y., Nagashima, N., Yuan, Y., Yokokawa, T., and Harada, H., Optimum Microstructure Combination for Maximizing Tensile Strength in a Polycrystalline Superalloy with a Two-Phase Structure, Acta Mater., 2013, vol. 61, pp. 1820–1829. https://doi.org/10.1016/j.actamat.2012.12.004

    Article  ADS  Google Scholar 

  8. Osada, T., Nagashima, N., Gu, Y., Yuan, Y., Yokokawa, T., and Harada, H., Factors Contributing to the Strength of a Polycrystalline Nickel-Cobalt Base Superalloy, Scripta Mater., 2011, vol. 64, pp. 892–895. https://doi.org/10.1016/j.scriptamat.2011.01.027

    Article  Google Scholar 

  9. Perepezko, J.H., The Hotter the Engine, the Better, Science, 2009, vol. 326, pp. 1068–1069. https://doi.org/10.1126/science.1179327

    Article  ADS  Google Scholar 

  10. Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.P., Development and Exploration of Refractory High Entropy Alloys—A Review, J. Mater. Res., 2018, vol. 33, pp. 3092–3128. https://doi.org/10.1557/jmr.2018.153

    Article  ADS  Google Scholar 

  11. Tsai, M.H. and Yeh, J.W., High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, no. 2, pp. 107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  Google Scholar 

  12. George, E.P., Raabe, D., and Ritchie, R.O., High-Entropy Alloys, Nat. Rev. Mater., 2019, no. 4, pp. 515–534. https://doi.org/10.1038/s41578-019-0121-4

    Article  ADS  Google Scholar 

  13. Miracle, D.B. and Senkov, O.N., A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  ADS  Google Scholar 

  14. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Zh.P., Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  15. Liu, X.W., Bai, Z.C., Ding, X.F., Yao, J.Q., Wang, L., Su, Y.Q., Fan, Z.T., and Guo, J.J., A Novel Light-Weight Refractory High-Entropy Alloy with High Specific Strength and Intrinsic Deformability, Mater. Lett., 2021, vol. 287, pp. 129255. https://doi.org/10.1016/j.matlet.2020.129255

    Article  Google Scholar 

  16. Juan, C.C., Tsai, M.H., Tsai, C.W., Lin, C.M., Wang, W.R., Yang, C.C., Chen, S.K., Lin, S.J., and Yeh, J.W., Enhanced Mechanical Properties of HfMoTaTiZr and HfMoNbTaTiZr Refractory High-Entropy Alloys, Intermetallics, 2015, vol. 62, pp. 76–83. https://doi.org/10.1016/j.intermet.2015.03.01

    Article  Google Scholar 

  17. Senkov, O.N., Isheim, D., Seidman, D.N., and Pilchak, A.L., Development of a Refractory High Entropy Superalloy, Entropy, 2016, vol. 18, p. 102. https://doi.org/10.3390/E18030102

    Article  ADS  Google Scholar 

  18. Wu, Y.D., Cai, Y.H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., and Hui, X.D., A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties, Mater. Lett., 2014, vol. 130, pp. 277–280. https://doi.org/10.1016/j.matlet.2014.05.134

    Article  Google Scholar 

  19. Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K., Refractory High-Entropy Alloys, Intermetallics, 2010, vol. 18, pp. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  Google Scholar 

  20. Reed, R.C., The Superalloys Fundamentals and Applications, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511541285

  21. Senkov, O.N., Senkova, S.V., and Woodward, C., Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys, Acta Mater., 2014, vol. 68, pp. 214–228. https://doi.org/10.1016/j.actamat.2014.01.029

    Article  ADS  Google Scholar 

  22. Miracle, D.B., Tsai, M.H., Senkov, O.N., Soni, V., and Banerjee, R., Refractory High Entropy Superalloys (RSAs), Scripta Mater., 2020, vol. 187, pp. 445–452. https://doi.org/10.1016/j.scriptamat.2020.06.048

    Article  Google Scholar 

  23. Whitfield, T.E., Pickering, E.J., Owen, L.R., Jones, C.N., Stone, H.Y., and Jones, N.G., The Effect of Al on the Formation and Stability of a BCC–B2 Microstructure in a Refractory Metal High Entropy Superalloy System, Materialia, 2020, vol. 13, p. 100858. https://doi.org/10.1016/j.mtla.2020.100858

    Article  Google Scholar 

  24. Cao, B.X., Yang, T., Fan, L., Luan, J.H., Jiao, Z.B., and Liu, C.T., Refractory Alloying Additions on the Thermal Stability and Mechanical Properties of High-Entropy Alloys, Mater. Sci. Eng. A, 2020, vol. 797, p. 140020. https://doi.org/10.1016/j.msea.2020.140020

    Article  Google Scholar 

  25. Soni, V., Gwalani, B., Alam, T., Dasari, S., Zheng, Y., Senkov, O.N., Miracle, D., and Banerjee, R., Phase Inversion in a Two-Phase, BCC + B2, Refractory High Entropy Alloy, Acta Mater., 2020, vol. 185, pp. 89–97. https://doi.org/10.1016/j.actamat.2019.12.004

    Article  ADS  Google Scholar 

  26. Soni, V., Gwalani, B., Senkov, O.N., Viswanathan, B., Alam, T., Miracle, D.B., and Banerjee, R., Phase Stability as a Function of Temperature in a Refractory High-Entropy Alloy, J. Mater. Res., 2018, vol. 33, pp. 3235–3246. https://doi.org/10.1557/jmr.2018.223

    Article  ADS  Google Scholar 

  27. Oliver, W.C. and Pharr, G.M., Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, vol. 19, pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  ADS  Google Scholar 

  28. Van Essen, R.M. and Buschow, K.H.J., Hydrogen Absorption in Various Zirconium- and Hafnium-Based Intermetallic Compounds, J. Less Common Met., 1979, vol. 64, pp. 277–284. https://doi.org/10.1016/0022-5088(79)90178-4

    Article  Google Scholar 

  29. Hubbell, W.C. and Brotzen, F.R., Elastic Constants of Niobium-Molybdenum Alloys in the Temperature Range –190 to +100°C, J. Appl. Phys., 1972, vol. 43, pp. 3306–3312. https://doi.org/10.1063/1.1661712

    Article  ADS  Google Scholar 

  30. Knowles, A.J., Dye, D., Dodds, R.J., Watson, A., Hardie, C.D., and Humphry-Baker, S.A., Tungsten-Based BCC-Superalloys, Appl. Mater. Today, 2021, vol. 23, p. 101014. https://doi.org/10.1016/j.apmt.2021.101014

    Article  Google Scholar 

  31. Yurchenko, N., Panina, E., Shaysultanov, D., Zherebtsov, S., and Stepanov, N., Refractory High Entropy Alloy with Ductile Intermetallic B2 Matrix/Hard BCC Particles and Exceptional Strain Hardening Capacity, Materialia, 2021, vol. 20, p. 101225. https://doi.org/10.1016/j.mtla.2021.101225

    Article  Google Scholar 

  32. Takasugi, M.Y.T. and Izumi, O., Anomalous Temperature Dependence of the Yield Strength in IVa-Vlll Intermetallic Compounds with B2 Structure, J. Mater. Sci., 1991, vol. 26, pp. 2941–2948. https://doi.org/10.1007/bf01124825

    Article  ADS  Google Scholar 

  33. Wollmershauser, J.A., Neil, C.J., and Agnew, S.R., Mechanisms of Ductility in CoTi and CoZr B2 Intermetallics, Metal. Mater. Trans A, 2010, vol. 41, p. 1217. https://doi.org/10.1007/s11661-009-9990-2

    Article  Google Scholar 

  34. Yurchenko, N., Panina, E., Rogal, Ł., Shekhawat, L., Zherebtsov, S., and Stepanov, N., Unique Precipitations in a Novel Refractory Nb-Mo-Ti-Co High-Entropy Superalloy, Mater. Res. Lett., 2022, vol. 10, pp. 78–87. https://doi.org/10.1080/21663831.2021.2022033

    Article  Google Scholar 

  35. Nagase, T., Todai, M., and Nakano, T., Development of Ti–Zr–Hf–Y–La High-Entropy Alloys with Dual Hexagonal-Close-Packed Structure, Scripta Mater., 2020, vol. 186, pp. 242–246. https://doi.org/10.1016/j.scriptamat.2020.05.033

    Article  Google Scholar 

  36. Takeuchi, A. and Inoue, A., Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-Regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, vol. 18, pp. 1779–1789. https://doi.org/10.1016/j.intermet.2010.06.003

    Article  Google Scholar 

  37. Munitz, A., Edry, I., Brosh, E., Derimow, N., MacDonald, B.E., Lavernia, E.J., and Abbaschian, R., Liquid Phase Separation in AlCrFeNiMo0.3 High-Entropy Alloy, Intermetallics, 2019, vol. 112, p. 106517. https://doi.org/10.1016/j.intermet.2019.106517

    Article  Google Scholar 

  38. Sims, C.T., Stoloff, N.S., and Hagel, W.C., Superalloys II: High Temperature Materials for Aerospace and Industrial Power, New York: Wiley Sons, 1987, vol. 208.

  39. Kaufman, M., Properties of Cast MAR-M-247 for Turbine Blisk Applications, in Superalloys: V Int. Symp., 1984, pp. 43–52.

  40. Suzuki, A., DeNolf, G.C., and Pollock, T.M., Flow Stress Anomalies in γ/γ′ Two-Phase Co-Al-W-Base Alloys, Scripta Mater., 2007, vol. 56, pp. 385–388. https://doi.org/10.1016/j.scriptamat.2006.10.039

    Article  Google Scholar 

  41. Lee, W.S. and Kao, H.C., High Temperature Deformation Behaviour of Haynes 188 Alloy Subjected to High Strain Rate Loading, Mater. Sci. Eng. A, 2014, vol. 594, pp. 292–301. https://doi.org/10.1016/j.msea.2013.11.076

    Article  Google Scholar 

  42. Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F., Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy, J. Mater. Sci., 2012, vol. 47, pp. 4062–4074. https://doi.org/10.1007/s10853-012-6260-2

    Article  ADS  Google Scholar 

  43. Yurchenko, N.Y., Stepanov, N.D., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A., Structure and Mechanical Properties of B2 Ordered Refractory AlNbTiVZrx (x = 0–1.5) High-Entropy Alloys, Mater. Sci. Eng. A, 2017, vol. 704, pp. 82–90. https://doi.org/10.1016/j.msea.2017.08.019

  44. Senkov, O.N., Rao, S.I., Butler, T.M., Daboiku, T.I., and Chaput, K.J., Microstructure and Properties of Nb-Mo-Zr Based Refractory Alloys, Int. J. Refract. Met. Hard Mater., 2020, vol. 92, p. 105321. https://doi.org/10.1016/j.ijrmhm.2020.105321

    Article  Google Scholar 

  45. Stepanov, N.D., Yurchenko, N.Y., Panina, E.S., Tikhonovsky, M.A., and Zherebtsov, S.V., Precipitation-Strengthened Refractory Al0.5CrNbTi2V0.5 High Entropy Alloy, Mater. Lett., 2017, vol. 188, pp. 162–164. https://doi.org/10.1016/j.matlet.2016.11.030

    Article  Google Scholar 

  46. Senkov, O.N., Jensen, J.K., Pilchak, A.L., Miracle, D.B., and Fraser, H.L., Compositional Variation Effects on the Microstructure and Properties of a Refractory High-Entropy Superalloy AlMo0.5NbTa0.5TiZr, Mater. Des., 2018, vol. 139, pp. 498–511. https://doi.org/10.1016/j.matdes.2017.11.033

    Article  Google Scholar 

  47. Senkov, O.N., Couzinie, J.P., Rao, S.I., Soni, V., and Banerjee, R., Temperature Dependent Deformation Behavior and Strengthening Mechanisms in a Low Density Refractory High Entropy Alloy Al10Nb15Ta5Ti30Zr40, Materialia, 2020, vol. 9, p. 100627. https://doi.org/10.1016/j.mtla.2020.100627

    Article  Google Scholar 

  48. Senkov, O.N., Woodward, C., and Miracle, D.B., Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys, JOM, 2014, vol. 66, pp. 2030–2042. https://doi.org/10.1007/s11837-014-1066-0

    Article  Google Scholar 

  49. Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A., Structure and Mechanical Properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) High Entropy Alloys, J. Alloys Compd, 2015, vol. 652, pp. 266–280. https://doi.org/10.1016/j.jallcom.2015.08.224

Download references

Funding

The work was financially supported by Russian Science Foundation project No. 21-79-10043 (https://rscf.ru/project/21-79-10043/). The work was carried out using the equipment of the Technologies and Materials CUC of the Belgorod State University funded by the Ministry of Higher Education and Science of the Russian Federation under agreement No. 075-15-2021-690 (project identifier RF 2296.61321X0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Panina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, E.S., Yurchenko, N.Y., Tozhibaev, A.A. et al. A Study of the Structure and Mechanical Properties of Nb-Mo-Co-X (X = Hf, Zr, Ti) Refractory High-Entropy Alloys. Phys Mesomech 26, 666–677 (2023). https://doi.org/10.1134/S1029959923060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923060061

Keywords:

Navigation