Skip to main content
Log in

Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes a numerical model of an “active medium” with linear elasticity and a negative initial dissipation constant dynamically renormalized under deformation. The analysis shows that such a system, being seemingly unstable over a wide range of geometries and origins of deformation, can spontaneously reach stable dynamic modes in which its time- and space-alternating dissipation forms complex quasiperiodic patterns and its total volume (length, area) oscillates on a large scale. The results presented in the paper are of interest in academic terms and in terms of mechanical and biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Herring, N. and Paterson, D.J., Levick’s Introduction to Cardiovascular Physiology, CRC Press, 2018.

  2. Cavanaugh, M.W., Pulsation, Migration, and Division in Dissociated Chick Embryo Heart Cells in Vitro, J. Exp. Zool., 1955, vol. 128, pp. 575–585. https://doi.org/10.1002/jez.1401280312

    Article  Google Scholar 

  3. Harary, I. and Farley, B., In Vitro Studies of Single Isolated Beating Heart Cells, Science, 1960, vol. 131, pp. 1674–1675. https://doi.org/10.1126/science.131.3414.1674

    Article  ADS  Google Scholar 

  4. DeHaan, R.L. and Hirakow, R., Synchronization of Pulsation Rates in Isolated Cardiac Myocytes, Exp. Cell. Res., 1972, vol. 70, pp. 214–220. https://doi.org/10.1016/0014-4827(72)90199-1

    Article  Google Scholar 

  5. Mark, G.E. and Strasser, F.F., Pacemaker Activity and Mitosis in Cultures of Newborn Rat Heart Ventricle Cells, Exp. Cell Res., 1966, vol. 44, pp. 217–233. https://doi.org/10.1016/0014-4827(66)90427-7

    Article  Google Scholar 

  6. Goshima, K., Synchronized Beating of and Electronic Transmission between Myocardial Cells Mediated by Heterotypic Strain Cells in Monolayer Culture, Exp. Cell Res., 1969, vol. 58, pp. 420–426. https://doi.org/10.1016/0014-4827(69)90523-0

    Article  Google Scholar 

  7. Ypey, D.L., Clapham, D.E., and DeHaan, R.L., Development of Electrical Coupling and Action Potential Synchrony between Paired Aggregates of Embryonic Heart Cells, J. Membr. Biol., 1979, vol. 51, pp. 75–96. https://doi.org/10.1007/BF01869344

    Article  Google Scholar 

  8. Gaudesius, G., Miragoli, M., Tomas, S.P., and Rohr, S., Coupling of Cardiac Electrical Activity over Extended Distances by Fibroblasts of Cardiac Origin, Circ. Res., 2003, vol. 93, pp. 421–428. https://doi.org/10.1161/01.RES.0000089258.40661.0C

    Article  Google Scholar 

  9. Kojima, K., Kaneko, T., and Yasuda, K., Role of the Community Effect of Cardiomyocyte in the Entrainment and Reestablishment of Stable Beating Rhythms, Biochem. Biophys. Res. Commun., 2006, vol. 351, pp. 209–215. https://doi.org/10.1016/j.bbrc.2006.10.037

    Article  Google Scholar 

  10. Den Hartog, J.P., Mechanical Vibrations, Dover, 1985.

  11. Rodriguez, M.L., McGarry, P.J., and Sniadecki, N.J., Review on Cell Mechanics: Experimental and Modeling Approaches, Appl. Mech. Rev., 2013, vol. 65, p. 060801. https://doi.org/10.1115/1.4025355

    Article  Google Scholar 

  12. Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E., and Truskey, G.A., Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy, J. Biomech., 2001, vol. 34, pp. 1545–1553. https://doi.org/10.1016/S0021-9290(01)00149-X

    Article  Google Scholar 

  13. Lieber, S.C., Aubry, N., Pain, J., Diaz, G., Kim, S.-J., and Vatner, S.F., Aging Increases Stiffness of Cardiac Myocytes Measured by Atomic Force Microscopy Nanoindentation, Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, pp. 645–651. https://doi.org/10.1152/ajpheart.00564.2003

    Article  Google Scholar 

  14. Liu, J., Sun, N., Bruce, M.A., Wu, J.C., and Butte, M.J., Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes, PLoS ONE, 2012, vol. 7, p. e37559. https://doi.org/10.1371/journal.pone.0037559

  15. Bajaj, P., Tang, X., Saif, T.A., and Bashir, R., Stiffness of the Substrate Influences the Phenotype of Embryonic Chicken Cardiac Myocytes, J. Biomed. Mater. Res. A, 2010, vol. 95, pp. 1261–1269. https://doi.org/10.1002/jbm.a.32951

    Article  Google Scholar 

  16. Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H.-Y., Speicher, D.W., Sanger, J.W., Sanger, J.M., and Discher, D.E., Embryonic Cardiomyocytes Beat Best on a Matrix with Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating, J. Cell. Sci., 2008, vol. 121, pp. 3794–3802. https://doi.org/10.1242/jcs.029678

    Article  Google Scholar 

  17. Nakano, K., Nanri, N., Tsukamoto, Y., and Akashi, M., Mechanical Activities of Self-Beating Cardiomyocyte Aggregates under Mechanical Compression, Nature. Sci. Rep., 2021, vol. 11, p. 15159.

    Google Scholar 

  18. Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001.

  19. Huygens, C., Oeuvres Complètes, Swets & Zeitlinger Publ., 1967, vol. 15.

  20. Sato, Y., Nakano, K., Nagamine, T., and Fuse, M., Synchronized Phenomena of Oscillators: Experimental and Analytical Investigation for Two Metronomes, Trans. Jpn. Soc. Mech. Eng. C, 2000, vol. 66, pp. 363–369. https://doi.org/10.1299/kikaic.66.363

    Article  Google Scholar 

  21. Kondou, T., Bonkobara, Y., Mori, H., and Ishikawa, S., Self-Synchronized Phenomena Generated in Pendulum-Type Oscillators: Analysis for Self-Synchronized Phenomena between Two Metronomes by Using Improved Shooting Method, Trans. Jpn. Soc. Mech. Eng. C, 2002, vol. 68, pp. 3499–3506. https://doi.org/10.1299/kikaic.68.3499

    Article  Google Scholar 

  22. Pantaleone, J., Synchronization of Metronomes, Am. J. Phys., 2002, vol. 70, pp. 992–1000. https://doi.org/10.1119/1.1501118

    Article  ADS  Google Scholar 

  23. Martens, E.A., Tutupalli, S., Fourrière, A., and Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, p. 10563. https://doi.org/10.1073/pnas.1302880110

    Article  ADS  Google Scholar 

  24. van der Pol, B. and van der Mark, J., The Heartbeat Considered as a Relaxation Oscillation, and an Electrical Model of the Heart, Philos. Mag. J. Sci., 1928, vol. 6, pp. 763–775. https://doi.org/10.1080/14786441108564652

    Article  Google Scholar 

  25. Wiesenfeld, K., Colet, P., and Strogatz, S.H., Frequency Locking in Josephson Arrays: Connection with the Kuramoto Model, Phys. Rev. E, 1998, vol. 57, pp. 1563–1569. https://doi.org/10.1103/PhysRevE.57.1563

    Article  ADS  Google Scholar 

  26. Kuramoto, Y.,Chemical Oscillations, Waves, and Turbulence, Berlin: Springer, 1984.

  27. Kiss, I.Z., Zhai, Y., and Hudson, J.L., Emerging Coherence in a Population of Chemical Oscillators, Science, 2002, vol. 296, pp. 1676–1678. https://doi.org/10.1126/science.1070757

    Article  ADS  Google Scholar 

  28. Winfree, A.T., Biological Rhythms and the Behavior of Populations of Coupled Oscillators, J. Theor. Biol., 1967, vol. 16, pp. 15–42. https://doi.org/10.1016/0022-5193(67)90051-3

    Article  ADS  Google Scholar 

  29. Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., and Ott, E., Crowd Synchrony on the Millennium Bridge, Nature, 2005, vol. 438, pp. 43–44. https://doi.org/10.1038/438043a

    Article  ADS  Google Scholar 

  30. Guevara, M.R., Glass, L., and Shrier, A., Phase Locking, Period-Doubling Bifurcations, and Irregular Dynamics in Periodically Stimulated Cardiac Cells, Science, 1981, vol. 214, pp. 1350–1353. https://doi.org/10.1126/science.7313693

    Article  ADS  Google Scholar 

  31. Mirollo, R.E. and Strogatz, S.H., Synchronization of Pulse-Coupled Biological Oscillators, SIAM J. Appl. Math., 1990, vol. 50, pp. 1645–1662. https://doi.org/10.1137/0150098

    Article  MathSciNet  Google Scholar 

  32. Glass, L., Synchronization and Rhythmic Processes in Physiology, Nature, 2001, vol. 410, pp. 277–284. https://doi.org/10.1038/35065745

    Article  ADS  Google Scholar 

  33. Eng, G., Lee, B.W., Protas, L., Gagliardi, M., Brown, K., Kass, R.S., Keller, G., Robinson, R.B., and Vunjak-Novakovic, G., Autonomous Beating Rate Adaptation in Human Stem Cell-Derived Cardiomyocytes, Nat. Commun., 2016, vol. 7, p. 10312. https://doi.org/10.1038/ncomms10312

    Article  ADS  Google Scholar 

  34. Fermi, E., Pasta, J., Ulam, S., and Tsingou, M., Studies of Nonlinear Problems: Los Alamos Report, LA-1940, 1955.

  35. Fermi, E., Pasta, J., Ulam, S., and Tsingou, M., The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension, Mattis, D.C., Ed., Singapore: World Scientific, 1993.

  36. Gavrilov, S.N. and Krivtsov, A.M., Thermal Equilibration in a One-Dimensional Damped Harmonic Crystal, Phys. Rev. E., 2019, vol. 100, p. 022117.

    Article  ADS  Google Scholar 

  37. Podolskaya, E.A., Krivtsov, A.M., and Kuzkin, V.A., Discrete Thermomechanics: From Thermal Echo to Ballistic Resonance (A Review), in Mechanics and Control of Solids and Structures, New York: Springer, 2022, pp. 501–533.

  38. Berinskii, I.E. and Kuzkin, V.A., Equilibration of Energies in a Two-Dimensional Harmonic Graphene Lattice, Philos. Trans. R. Soc. A, 2020, vol. 378(2162), p. 20190114.

    Article  ADS  Google Scholar 

  39. Sokolov, A.A., Krivtsov, A.A., and Müller, W.H., Localized Heat Perturbation in Harmonic 1D Crystals: Solutions for an Equation of Anomalous Heat Conduction, Phys. Mesomech., 2017, vol. 20, no. 3, pp. 305–310. https://doi.org/10.1134/S1029959917030067

    Article  Google Scholar 

  40. Nos’e, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble, J. Chem. Phys., 1984, vol. 81, pp. 511–519.

    Article  ADS  Google Scholar 

  41. Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, vol. 31, pp. 1695–1697.

    Article  ADS  Google Scholar 

  42. Langevin, P., Sur la théorie du mouvement Brownien (On the Theory of Brownian Motion), Acad. Sci. Paris, 1908, vol. 146, pp. 530–533.

    Google Scholar 

  43. Lepri, S., Livi, R., and Politi, A., Heat Conduction in Chains of Nonlinear Oscillator, Phys. Rev. Lett., 1997, vol. 78, p. 1896.

    Article  ADS  Google Scholar 

  44. Filippov, A.E., Hu, B., Li, B., and Zeltser, A., Energy Transport between Two Attractors Connected by a Fermi–Pasta–Ulam Chain, J. Phys. A. Math. Gen., 1998, vol. 31, pp. 7719–7728.

    Article  ADS  Google Scholar 

  45. Filippov, A.E. and Gorb, S.N., Combined Discrete and Continual Approaches in Biological Modelling, Cham: Springer, 2020.

  46. Filippov, A.E. and Popov, V.L., Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation: Supplementary Video 1. http://dx.doi.org/10.13140/RG.2.2.16187.69927

  47. Filippov, A.E. and Popov, V.L., Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation: Supplementary Video 2. http://dx.doi.org/10.13140/RG.2.2.31287.19366

  48. Filippov, A.E. and Popov, V.L., Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation: Supplementary Video 3. http://dx.doi.org/10.13140/RG.2.2.20801.43369

  49. Zuev, L.B. and Khon, Yu.A., Plastic Flow as Spatiotemporal Structure Formation. Part I. Qualitative and Quantitative Patterns, Phys. Mesomech., 2022, vol. 25, no. 2, pp. 103–110. https://doi.org/10.1134/S1029959922020011

    Article  Google Scholar 

  50. Khon, Yu.A. and Zuev, L.B., Plastic Flow as Spatiotemporal Structure Formation. Part II. Two-Level Description, Phys. Mesomech., 2022, vol. 25, no. 2, pp. 111–118. https://doi.org/10.1134/S1029959922020023

    Article  Google Scholar 

  51. Beygelzimer, Y., Estrin, Y., Filippov, A.E., Mazilkin, A., Mail, M., and Baretzky, B., Simulation of Layered Structure Instability under High-Pressure Torsion, Mater. Lett., 2022, vol. 324, p. 132689.

    Article  Google Scholar 

  52. Filippov, A.E. and Popov, V.L., Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation: Supplementary Video 4. http://dx.doi.org/10.13140/RG.2.2.34223.20640

  53. Kerner, B.S. and Osipov, V.V., Self-Organization in Active Distributed Media: Scenarios for the Spontaneous Formation and Evolution of Dissipative Structures, Sov. Phys. Usp., 1990, vol. 33, no. 9, p. 679.

    Article  ADS  Google Scholar 

  54. Ivanchenko, Yu.M., Lisyansky, A.A., and Filippov, A.E., Fluctuation Effects in Systems with Competing Interactions, Kiev: Naukova Dumka, 1989.

  55. Filippov, A.E., Radievsky, A.V., and Zeltser, A.S., Kinetics of Vortex Formation in Superconductors with d Pairing, Phys. Rev. B, 1996, vol. 54, p. 3504.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Filippov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.E., Popov, V.L. Spontaneous Stabilization and Large-Scale Oscillations of an Active Medium with Negative Dissipation. Phys Mesomech 26, 608–620 (2023). https://doi.org/10.1134/S1029959923060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923060024

Keywords:

Navigation